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ABSTRACT

Population forecasts entail a significant amount of uncertainty, espdoialbng-range
horizons and for places with small or rapidly changing populations. This uncertainbg c
dealt with by presenting a range of projections or by developing sttistediction intervals
based on models that incorporate the stochastic nature of the forecasting @rocessipirical
analyses of past forecast errors. In this paper, we develop and test éipr@dazion intervals
for county population forecasts in the United States. We find that prediction intersetsdra
the distribution of past forecast errors provide reasonably accuratetiorexiaf the distribution
of future forecast errors. We believe the construction of empirical pediatervals to
accompany population forecasts will help data users plan more effectivaly fimcertain

future.



Introduction

Population forecasts entail a significant amount of uncertainty, espdoialbng-range
horizons and for places with small or rapidly changing populations. More than 3@gears
Keyfitz (1972) made the case that demographers should provide a warning rededing t
uncertainty to the users of their forecasts. This warning has typicallypb@éded by
presenting a range of projections (e.g., Hollmann, Mulder, & Kallan, 2000), butint nggars
attention has been given to developing statistical prediction intervals that paovedelicit
probabilistic statement regarding the level of error expected to accgragmpulation forecast.
Statistical prediction intervals can be based on models that incorporatedastic nature of
the forecasting process (e.g., Alho and Spencer, 1990; Cohen, 1986; Lutz, Sanderson, and
Scherbov, 1999; Pflaumer, 1992) or on empirical analyses of past forecast errorsediig.,, K
1981; Smith and Sincich, 1988; Stoto, 1983; Tayman, Schafer, and Carter, 1998).

In this paper, we develop and test prediction intervals based on the latter approach.
Under formal definitions, probability statements regarding the accura@pafgiion forecasts
based on the distribution of past forecast errors cannot be made because theathisfilfwtiire
errors is unknown (and unknowable) at the time the forecasts are made. Howewesnif
forecasting methods are similar to those used in the past, and if the degreetafninée about
the same in the future as it was in the past, then we can assume that futais farers will be
drawn from the same distribution as past forecast errors (Keyfitz, 1981)s i thie, empirical
prediction intervals will provide a reasonable measure of the uncertainty sungeaodient
population forecasts.

The usefulness of empirical prediction intervals relies heavily on the psarthat the

distribution of forecast errors remains stable over time. Few reseatezhe evaluated the



validity of this assumption. Perhaps the most comprehensive evaluation was conducteith by S
and Sincich (1988), who examined state-level population forecasts using data from 1900 to 1980.
Following a methodology developed by Williams and Goodman (1971), they evaluatedtforeca
errors for 10- and 20-year horizons and found that the means and variances of absolute forecas
errors remained relatively stable over time, especially after 188that the variances of
algebraic forecast errors remained moderately stable over time buh#sis were not at all
stable. They concluded that the study of past forecast errors is usefuet@storg the level of
precision of current population forecasts, but not for forecasting their tendereyao high or
too low.

Since that study, little additional research has analyzed the stabildsecast errors over
time or investigated the performance of empirical prediction interviasour knowledge, no
study has considered these issues at the substate level. We believe atseasibstate level
is essential because small-area forecasts are used by decisionforakevgle variety of
planning, budgeting, and analytical purposes. Examples include planning for futere wat
consumption (Texas Water Development Board, 1997), choosing locations for neatiness
(Tayman, Parrott, and Carnevale, 1994), evaluating the demand for additional hesgitaks
(Thomas, 1994), and projecting future public school enrollment (McKibben, 1996). Optimal
decisions cannot be made without some understanding of the likely level of accutteey of
population forecasts upon which those decisions are based.

In this paper, we analyze population forecast errors for counties in the Unitiesl Sta
Following the approach used by Smith and Sincich (1988), we construct empiricalipnedic
intervals and investigate whether error distributions from previous forecastdeuseful

predictions of error distributions for subsequent forecasts. We do not conduct fotistataita



tests, but rather evaluate stability indirectly using averages, meé#hsercentile errors, and
coefficients of variation. We find that the study of past forecast errors canmlipaeede useful
information regarding the likely distribution of future forecast errors. Weugethis
information provides a basis for constructing empirical prediction intetivatswill help data
users evaluate the likely accuracy of population forecasts and plan moteeffdor an
uncertain future.
Data and Forecasting Techniques

We used decennial census data from 1900 to 2000 to construct and analyze population
forecasts for counties (or county equivalents) in the United Stafés restricted our analysis to
the 2,482 counties for which there were no significant boundary changes between 1900 and
2000; this group accounted for 79% of all counties in 2000. Forecast errors for this group of
counties were compared to forecast errors for a larger group of 2,978 courmies (g for
95% of all counties) whose boundaries did not change significantly after 1930. dPrecigi
bias for these two groups of forecasts were found to be very similar. We used tlee groap
with constant boundaries since 1900 because it permitted the analysis of a largeraiumbe
launch years and forecast horizons.

We use the following terminology to describe populatiordasts:

1) Base year: the year of the earliest populationusied to make a forecast.

2) Launch year: the year of the latest populationisee to make a forecast.

3) Target year: the year for which population sizirecasted.

4) Base period: the interval between the base yedaanch year.

5) Forecast horizon: the interval between the launchayehtarget year.



For example, if data from 1900 and 1920 were used ¢ézdst population in 1930, then 1900
would be the base year, 1920 would be the launch yedr vi@3d be the target year, 1900 - 1920
would be the base period, and 1920 - 1930 would be the $bfemazon.
We made forecasts of total population for each county using seven simple trend
extrapolation techniques (see Appendix 1 for a description of these techniques)retast$o
were based on 20-year base periods, the base period shown previously to produce the most
accurate forecasts for counties in this data set (Rayer, 2004). The ®rezhtunch years
extending from 1920 to 1990 and horizons ranging from 10 to 30 years. The 21 combinations of
launch year and forecast horizon—and their associated target years-evanarsfable 1.
Compared to other techniques, simple trend extrapolation techniques have a number of
advantages for population forecasting purposes. They require few basemawaapaplied at
low cost, and can be applied retrospectively to produce forecasts that areatdenpeer time.
These characteristics are particularly important when makingastetor a large number of
geographic areas and historical time periods. Furthermore, a substantiaf kottience
indicates that trend extrapolation techniques produce forecasts of total populdtare titdeast
as accurate as those produced by more complex techniques (for a summamvadénce, see
Smith, Tayman, and Swanson, 2001: 307-313). We believe these techniques provide a useful
vehicle for assessing the stability of population forecast errorgioveand testing the validity
of empirical prediction intervals.
We calculated the average of the seven individual forecasts for each countyaf#\/7)
the average after the highest and lowest were excluded (AV5). The latteuma reduces the
impact of outliers on forecast errors and is often called a trimmed medogimekit produced

slightly smaller forecast errors than AV7 in the present study. A nurhisardes have



documented the benefits of combining forecasts, both in demography and other fields
(Armstrong, 2001: 417-439; Smith et al., 2001:328-331). Given the large number of individual
forecasts, we present only the results for AV5; however, it should be noted thabintiagy

results for the other techniques were similar to those reported here.

Forecasts for each county were made for each of the 21 launch yeartfboszam
combinations shown in Table 1 and were compared to census counts for each targdteear. T
resulting differences are called forecast errors, although they avaybeen caused partly by
errors in the census counts themselves. All errors are reported as pescbyntdigeding by
census counts and multiplying by 100. We refer to errors that ignore the directiorewbties
absolute percent errors (APEs) and errors that account for the direction of thees exigebraic
percent errors (ALPES).

General Description of Forecast Errors

Several summary measures were used to provide a general descriptionasftfersors.
The mean absolute percent error (MAPE), median absolute percent error (NEE e 98
percentile error (J0PE, calculated as the APE that was larger than exactly 90% of al) ARES
measures of precision; they show how close the forecasts were to popuwatitsregardless of
whether they were too high or too low. The mean algebraic percent error (MAbBE)edian
algebraic percent error (MEDALPE) are measures of bias; they showtenty for forecasts
to be too high or too low. These and similar measures have often been used to evaluate the
accuracy of population forecasts (e.g., Isserman, 1977; Pflaumer, 1992; Rayer, 2@04n8m
Sincich, 1988; Tayman et al., 1998).

We also used a measure of the distribution of APEs. The coefficient of variatipis(C

the standard deviation divided by the mean error, multiplied by 100. It provides a enefaisgr



dispersion of forecast errors around the mean value. Theoretically, CV valuasgarirom
zero to infinity. In reality, they are seldom zero and rarely approach ypfalihough they are
often found to be greater than 100. High values reflect a high degree of dispersion around the
mean and low values reflect a low degree of dispersion. When measured over tim&/ high C
values reflect a low degree of temporal stability and low values refleghalbgree of stability.
The CV provides a way to compare the degree of dispersion in one data series with that
another, even if the means differ substantially from each dther.

How can CV values be judged? That is, what values reflect high, medium, or low
degrees of stability? There are no clear guidelines in the literattiver,rzalues have been
found to differ substantially from one context to another, depending on the specifitesria
geographic regions, and time periods covered. For example, CV values for meaathiegiof
performance have been found to fall between 1% and 5%, depending on the nature of the event,
the time between events, and the experience of the athlete (Hopkins, 2000). ratesdst
household saving deposits have exhibited CV values between 8% and 28% for countries in the
European Union (European Central Bank, 2006). A study of the commercial televisionyindustr
found a CV of 94% in turnover rates for managers (Sorenson, 2002). A study of subcounty
forecast errors in San Diego County found CV values ranging from 75% to 235% for populations
in different size categories (Tayman, et al., 1998). In analyzing thiétgtaf forecast errors
over time, we classify CV values of less than 10% as very stable, 10-25% as athleader
than 25% as unstable.

Table 2 shows forecast errors for counties by target year and forecashhdsieveral
patterns stand out in the measures based on APEs. First, the MAPE exceeded th&aENtiEDAP

every horizon and target year, indicating that even though the trimmed mean {&\Wisheel the



individual forecasts with the highest and lowest values, MAPEs were stitkadf by the
presence of outliers. Typically, MAPEs exceeded MEDAPEs by 30-40%. Seaonsl, er
increased about linearly with the forecast horizon. For each ten year encreélas forecast
horizon, MAPEs rose by about 10%, MEDAPESs by about 7%, afildE9by about 21%.

Third, there were only modest differences in errors by target year withrf@acast horizon, at
least until the last few target years. Only for 1990 and 2000 for 10-year horizons andr2000 f
the 20-year horizon were errors substantially different than for all othet tgrars. We offer an
explanation for this finding later in the paper.

Whereas MAPEs always exceeded MEDAPEs, MALPEs were sometirges tlaan
MEDALPEs and sometimes smaller. Both of these measures of bias varietecalolyi by
target year, as is shown by the large standard deviations and changes in sigmeftanget year
to another. However, there was a tendency for MALPEs and MEDALPEs to be pasitive f
earlier target years and negative for later target years, espémidbnger forecasts horizons. In
general, we believe that there is no predictability regarding the likelihobd theen set of
forecasts will turn out to be too high or too low. A number of previous studies have drawn
similar conclusions (e.g., Isserman, 1977, Kale, Voss, Palit, and Krebs, 1981; Smithccty S
1988; Tayman et al., 1998).

The CV generally declined as the target year increased, although thendiéfefrom one
target year to another were not extremely large. This implies that Bétlase slightly more
concentrated around the mean as the century progressed. It is particularbyriytévat—in
contrast to the other measures—CVs changed very little as the forecast goeiwdanger.

This shows that even though the MAPE, MEDAPE, artP®increased steadily with the



length of the forecast horizon, the degree of dispersion of APEs around the meaedeajuam
stable.

The bottom three rows of each panel in Table 2 provide a summary of the results for all
the individual target years within a given length of forecast horizon; that iayénage, standard
deviation, and CV are based on the values of each error measure for each éargéhgeCV in
the bottom row has a different interpretation than the CV discussed above. Whereasahe C
the right-hand column of the table shows the degree of dispersion of APEs around thermean fo
individual target years, the CV in the bottom row of each panel shows the degree of alispersi
MAPEs, MEDAPESs, and $%PEsacross target years.

Although the averages varied considerably from measure to measure, the @¥¢s for t
MAPE, MEDAPE, and 96PE were very similar to each other within each of the three horizons,
ranging only from 22 to 25 for 10-year horizons, from 20 to 22 for 20-year horizons, and from 13
to 17 for 30-year horizons. The CVs for the CV had even lower values. These resultaireflec
fairly high degree of stability in the distribution of APEs over time and provigpat for the
hypothesis that empirical prediction intervals based on errors from one tiroe wdtiprovide
reasonable measures of uncertainty for subsequent population forecasts.

Empirical Prediction Intervals

Although the data in Table 2 show a substantial degree of stability over time in the
distribution of APESs, they show no stability at all in the distribution of ALPEss 3inggests
that the study of past forecast errors may help us predict the level ciqmex current
forecasts, but is not likely to help us predict their tendency to be too high or too low. We
therefore focus on the distribution of APEs in our efforts to develop and evaluatecampiri

prediction intervals.
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Under the approach used by Smith and Sincich (1988), information on the distribution of
past APEs is used to predict the distribution of future APEs. A major advantage pptioacn
is that it can accommodate any type of error distribution, including the asyimaret truncated
distributions characteristic of APEs. It also permits an assessmentpoéthetion intervals
themselves; that is, we can compare the actual number of errors falling tivéhntervals with
the predicted number.

Following this approach, we ranked the APEs for each of the 21 sets of fosetdsts
determined the 9%PE, as shown in Table 2. Then, we used ¥ &0from target yearn as the
forecast of the 9EPE in target year wheren is the length of the forecast horizoRor example,
if 1950 were the target year for a 10-year forecast based on launch year 19@Ptdor
1950 would be used to predict thé"&E for 1960 for a 10-year forecast based on launch year
1950. If error distributions remain relatively stable over tim&P#s from past distributions
will provide reasonably accurate predictions of futurfBs. To assess the validity of that
hypothesis, we compared the predicted with the actf##Bdor each target year and computed
the percentage of APEs that fell within the predicted values.

Table 3 shows the percentage of APEs in each target year that was less pineditted
90"PE. The numbers can be interpreted as follows: A value of 90 reflects a perfaztiqredi
Values below 90 indicate that the™®E for target yearwas greater than the E for target
yeart—n (i.e., fewer APEs fell within the predicted range). Values above 90 indheate t
opposite. In addition to errors for each target year, this table shdiRES@veraged across all
target years for each horizon, along with the standard deviation and CV asbocthtthe

average 96PE.

11



For averages covering all the target years within a given forecasbhpfiable 3 reflects
a high degree of stability for horizons of differing lengths: approxim&¥s of APEs fell
within the predicted dePE for all three horizons. There was more variability when comparing
individual target years within each horizon, but for the most part the values did pdastram
90, indicating a reasonably high degree of stability over time. CVs wghtlglabove 6% for
all three horizons, further demonstrating temporal stability.

It is possible that using data from several historical time periods to pheiict forecast
errors will provide better results than using data from a single time periocekstlibis
hypothesis, we evaluated the percentage BPE8 that were less than the average ofitbe
previous target years (not shown here). This adjustment had little impact orutte res
generally leading to errors that were sligh#gger than those shown here. In this sample, then,
data from a single time period were sufficient for constructing emappiediction intervals.

In order to investigate the impact of the choice of cut-off points for the padicti
intervals, we replicated the analysis usin p&rcentile errors (7%E) instead of 90percentile
errors (not shown here). This led to generally similar results, albisamewhat more
variability from one target year to another. We believe this greater \ldyiaas caused by the
greater concentration of APEs around thBME than the I(PE. As a result, small differences
in the size of the predicted percentile error led to a larger difference iertenpage of APEs
falling within the predicted value for the "iBE than for the S0PE. In general, the further the
distance from the center of an error distribution, the lower the concentratid?Esf #&ound a
particular percentile error.

Many studies have found forecast errors to be affected by differences intjpopsize

and growth rate. Table 4 shows"&®Es for counties by population size in the launch year, for
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each combination of target year and forecast horizon. For each targetg/éamgth of horizon,
errors generally declined as population size increased, with the largestslggically
occurring in the move from the smallest to the next-smallest size cateboe CVs also
generally declined as population size increased, reflecting a highee a@égear-to-year
variation in errors for small counties than large counties. Many studie$dwaceforecast
errors to be larger for small places than large places (e.g., Isserman, 10d@@ck/ et al. 1984,
Rayer, 2004; Smith et al., 2001; White, 1954).

How do differences in population size affect stability in the distribution of forecas's
over time? Table 5 shows the percentage of APEs that were less than theg8HIRE by
population size in the launch year. In general, differences by population sezéwly small
and followed no consistent pattern. For some combinations of target year and lengidoof hor
the percentages rose with population size; for others, they fell; and for somie|lthegd no
clear pattern. The CVs were small and did not vary much among the four sgeriest or by
length of forecast horizon. Although'"¥®Es themselves varied considerably with differences in
population size, it appears that differences in population size had no consistenoimibect
predictability of 9'PEs.

Table 6 shows 9WPEs for counties by the rate of population growth during the base
period, for each combination of target year and forecast horizon. Errors edisghyed a U-
shaped pattern, with higher values for counties with large negative growthsratder values
for counties with moderate growth rates, and higher values for counties \gglplasitive
growth rates. These patterns are also consistent with those found in previouh resga

Isserman, 1977; Murdock et al, 1984; Smith, 1987). CVs followed the same U-shaped pattern
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for 10- and 20-year forecast horizons, but followed a continuously upward-sloping pattéen for t
30-year horizon.

Table 7 shows the percentage of APEs that were less than the preditedtgo
population growth rate during the base period. In contrast to differences in populagion si
differences in growth rates had a generally consistent impact on thenpance of prediction
intervals: there was a strong tendency for the percentage of APEs thatsviisah the predicted
90"PE to increase with the growth rate. Values were generally smallesufuties in the
lowest growth category and increased with increases in the growth rateerfare—as
indicated by CVs that declined as growth rates increased for all thgthdeof forecast
horizon—values for individual target years varied most for counties with rapidiyicecl
populations and varied least for counties with rapidly growing populations. That esyher
more consistency in the results across target years for rapidly grpapugations than for
rapidly declining populations.

These results suggest that differences in the rate of population growth drasiséent
impact on the stability of the distribution of forecast errors over time. For csuwvitlerapidly
declining populations, there was a tendency for the error distribution from theuysearget
year to under-project the 9BE; whereas for counties with rapidly growing populations, there
was a tendency to over-project thé"B&.

The results shown in Tables 4 and 6 provide an explanation for why MAPEs, MEDAPEs,
and 90'PEs were smaller for target years at the end of the@6tury than for target years
earlier in the century, as shown in Table 2. Over the course of the century, the otilatgr
counties increased and the number of small counties declined; similarly, the rfirmdenties

with moderate growth rates increased relative to the number with extrew gates. Both of
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these trends raised the number of counties that tend to have relatively sroalitfereors and
lowered the number that tend to have relatively large forecast errors. Conkegueas were
smaller for the last years in the century than for earlier years.

Summary and Conclusions

In this study, we evaluated population forecast errors for 2,482 counties in the United
States. The forecasts were made using seven simple trend extrapolamuies and a variety
of base periods and forecast horizons between 1900 and 2000. We found that:

1) MAPEs, MEDAPEs, and $0PEs remained fairly constant over time, but declined over
the last few decades in the century.

2) MALPEs and MEDALPEs did not remain at all constant over time.

3) MAPEs, MEDAPESs, and $%Es increased with the length of the forecast horizon, often
in a nearly linear manner.

4) In most instances, the 9BE from one time period provided a reasonably accurate
forecast of the percentage of APEs falling within the predicted 90% intartra i
following time period, even for long forecast horizons.

5) Differences in population size had little impact on the percentage of AHEg fathin
the predicted 90% interval, but differences in population growth rate had a sabstanti
impact.

Based on this evidence, we have concluded that the study of past forecasta@rrors
provide useful information regarding the distribution of future APES, but can provide litt
guidance regarding the tendency for forecasts to be too high or too low. Of pantirksst is
the finding that—throughout the 2@entury— 98PEs from previous error distributions

provided reasonably accurate predictions of subsequBRES0 Given the tremendous changes
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in population trends that occurred during th& 28ntury, this is quite a notable finding. It
suggests that data from previous time periods can be used to construct empulictibpr
intervals to accompany county population forecasts, and that these intervadelgrt® Iprovide
data users with a realistic measure of the degree of uncertainty inmepepuiation forecasts
that will enhance their ability to plan intelligently for the future.

As this paper shows, there is a substantial degree of uncertainty inherent-raspert
county population forecasts and an even higher degree of uncertainty in longeracgstt.
Approximately 10% of the absolute errors in our analysis were greater than 2206yfear
horizons, greater than 41% for 20-year horizons, and greater than 63% for 30-yearsholnz
addition, some sets of forecasts had an upward bias and others had a downward bias. This high
degree of uncertainty may be disappointing to data users but we believe it isr@teacc
reflection of reality that must be conveyed to those who use population forecastidmmnde
making purposes.

For counties and other subnational areas, we believe an empirical approadi tis like
provide more reliable estimates of uncertainty than models that incorporatectiesstc nature
of the forecasting process. Model-based prediction intervals require a subatantiat of base
data and are subject to errors in specifying the model, errors in estinmaimgpdel's
parameters, and future structural changes that invalidate the model's paestetates (Lee,
1992). In addition, many different models can be specified, each providing a differeint se
prediction intervals (Cohen, 1986; Keilman, Pham, and Hetland 2002; Sanderson 1995).

Empirically-based prediction intervals have their own limitations, of course fouhd
that more than 90% of APEs fell inside the 90% prediction intervals in some taagetye less

than 90% in other target years. Intervals based BRES did not perform as well as intervals
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based on 90PEs. Furthermore, the empirical approach does not provide reliable forecasts of the
likely direction of future forecast errors. Further research comparngetiormance of model-
based and empirical prediction intervals is needed before we can draw finuscame
regarding which approach is likely to provide more useful measures of ungertai

Other questions related to empirical prediction intervals remain to be answeved.a
Can formal criteria be established for evaluating the stability of distarbutions over time?
How much historical data are needed to develop the most stable intervals? hQajuesche
developed for adjusting prediction intervals to account simultaneously for thetiafipac
differences in population size, growth rates, geographic region, and perhapfaotors as
well? How do differences in the choice of cut-off points (e.d"\80 75" percentile) affect the
accuracy of forecast error predictions? Can information on the distributiorocs &ar one
geographic region be used to develop prediction intervals for another geogramme r¥gould
results based on other forecasting techniques be similar to those reportedindy?? We
believe future research will provide answers to these and similar questions antbeniran

ability to construct empirical prediction intervals to accompany population &igeca
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Endnotes
1. See Rayer, 2004, for a complete description of the data set.
2. We do not show coefficients of variation for algebraic percent errors bebausedsure
loses its meaning and usefulness when the mean approaches zero and the distributisn contai

both positive and negative values (Lohninger, 1999).
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Tablel. Target Yearsby Launch Year and Forecast Horizon

Forecast Horizon (Years)

Launch Year 10 20 30
1920 1930 1940 1950
1930 1940 1950 1960
1940 1950 1960 1970
1950 1960 1970 1980
1960 1970 1980 1990
1970 1980 1990 2000
1980 1990 2000 ---
1990 2000 --- ---
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Table 2. Forecast Errorsby Target Year and Length
of Forecast Horizon

Horizon

Target Year Length MAPE MEDAPE MALPE MEDALPE 90thPE CVv
1930 10 12.2 7.8 2.2 1.4 29.1 113.6
1940 10 11.2 7.9 0.4 -0.9 23.3 111.2
1950 10 11.2 7.8 2.9 2.3 24.9 99.8
1960 10 10.3 7.4 0.3 0.3 23.2 95.7
1970 10 9.6 6.8 2.4 -2.0 21.0 101.1
1980 10 13.2 11.2 -9.5 -9.2 26.3 77.3
1990 10 7.8 6.4 4.0 4.6 15.6 85.2
2000 10 6.2 4.5 -3.5 -3.0 13.9 96.9
Average 10 10.2 7.5 -0.7 -0.8 22.2 97.6
St. Dev. 10 2.3 1.9 4.4 4.2 52 12.1
CVv 10 22.5 25.1 - - 23.4 12.4
1940 20 20.2 12.7 5.9 0.6 47.1 112.9
1950 20 19.9 14.3 3.6 1.0 43.6 100.4
1960 20 23.0 16.7 6.4 3.1 50.9 92.6
1970 20 16.7 12.0 -0.5 -1.2 37.3 97.5
1980 20 21.4 17.4 -12.1 -12.0 45.6 80.8
1990 20 19.4 16.1 -9.3 -9.8 39.6 77.5
2000 20 11.4 8.7 0.7 1.9 24.6 93.5
Average 20 18.9 14.0 -0.8 2.4 41.3 93.6
St. Dev. 20 3.8 3.1 7.3 6.0 8.6 11.9
CVv 20 20.1 22.1 - - 20.9 12.8
1950 30 33.1 20.9 14.0 4.1 78.7 113.0
1960 30 32.9 23.4 8.5 2.6 68.1 104.9
1970 30 31.9 23.2 9.0 3.2 68.3 97.2
1980 30 22.1 16.8 -9.8 -10.4 49.3 90.0
1990 30 29.3 24.7 -11.9 -13.9 60.6 78.4
2000 30 27.8 24.2 -14.5 -17.4 55.3 72.8
Average 30 29.5 22.2 -0.8 -5.3 63.4 92.7
St. Dev. 30 4.2 2.9 12.6 9.7 10.5 15.4
CVv 30 14.2 13.2 - - 16.6 16.6
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Table 3. Percentage of APEs Less Than
the Predicted 90th Percentile Error

Horizon
Target Year Length Percentage
1940 10 93.0
1950 10 88.4
1960 10 90.9
1970 10 92.2
1980 10 80.1
1990 10 98.5
2000 10 924
Average 10 90.8
St. Dev 10 5.6
CV 10 6.2
1950 20 91.5
1960 20 84.9
1970 20 95.3
1980 20 83.4
1990 20 94.0
2000 20 97.6
Average 20 91.1
St. Dev. 20 5.7
CV 20 6.3
1960 30 92.9
1970 30 89.9
1980 30 96.9
1990 30 82.0
2000 30 93.1
Average 30 91.0
St. Dev. 30 5.6
CV 30 6.2
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Table 4. 90th Percentile Errors by Population

Size
Horizon 5,000 - 15,000 -

Target Year Length < 5,000 15,000 50,000 > 50,000 All
1930 10 59.9 30.1 22.8 21.9 29.1
1940 10 59.0 28.8 17.0 18.4 23.3
1950 10 45.7 26.0 22.8 22.3 24.9
1960 10 31.8 23.5 215 26.7 23.2
1970 10 34.8 23.4 18.7 17.4 21.0
1980 10 36.8 28.7 24.1 19.0 26.3
1990 10 19.0 16.1 14.9 154 15.6
2000 10 21.0 14.7 12.3 12.5 13.9

Average 10 38.5 23.9 19.3 19.2 22.2
St. Dev 10 15.5 5.8 4.2 4.4 5.2
CV 10 40.3 24.2 22.0 23.0 23.4
1940 20 86.7 57.0 35.9 35.0 47.2
1950 20 76.7 50.2 35.4 31.6 43.6
1960 20 80.8 56.1 48.1 43.2 50.9
1970 20 51.5 35.5 35.5 37.7 37.3
1980 20 66.8 52.6 38.8 32.0 45.7
1990 20 53.2 41.9 34.6 34.6 39.6
2000 20 32.3 25.9 21.8 23.8 24.6
Average 20 64.0 45.6 35.7 34.0 41.3
St. Dev. 20 19.4 11.7 7.7 6.0 8.6
CV 20 30.2 25.6 21.6 17.5 20.9
1950 30 124.7 96.5 61.9 54.6 78.7
1960 30 100.3 80.7 59.4 50.5 68.1
1970 30 115.1 73.9 64.0 55.5 68.3
1980 30 68.9 50.5 46.1 42.8 49.3
1990 30 78.1 67.4 51.7 49.3 60.6
2000 30 715 58.5 47.9 49.2 55.3
Average 30 93.1 71.3 55.2 50.3 63.4
St. Dev. 30 23.7 16.4 7.6 4.6 10.5
CV 30 25.4 23.0 13.7 9.1 16.6
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Tableb5. Percentage of APEs L ess Than the Predicted 90th Percentile Error
by Population Size

Horizon 5,000 - 15,000 -

Target Year Length <5,000 15,000 50,000 > 50,000 All
1940 10 90.5 91.4 96.3 94.1 93.0
1950 10 95.0 92.2 82.8 86.5 88.4
1960 10 96.1 91.1 91.2 87.6 90.9
1970 10 87.7 89.7 93.2 98.1 92.2
1980 10 85.8 78.2 80.3 86.5 80.1
1990 10 97.6 98.4 99.0 96.2 98.5
2000 10 86.8 91.1 93.8 94.7 92.4

Average 10 91.3 90.3 90.9 92.0 90.8
St. Dev 10 4.8 6.0 6.9 4.9 5.6
CV 10 5.3 6.7 7.6 5.4 6.2
1950 20 93.0 93.4 90.9 94.8 91.5
1960 20 88.7 87.2 80.8 81.0 84.9
1970 20 98.7 97.5 95.4 92.1 95.3
1980 20 78.4 72.2 87.2 95.0 83.4
1990 20 97.4 96.3 93.4 86.9 94.0
2000 20 97.6 97.9 97.3 97.5 97.6
Average 20 92.3 90.7 90.8 91.2 91.1
St. Dev. 20 7.8 9.9 6.0 6.2 5.7
CV 20 8.4 10.9 6.7 6.8 6.3
1960 30 88.4 94.6 91.1 93.0 92.9
1970 30 90.6 91.9 88.0 88.0 89.9
1980 30 98.0 98.4 96.9 95.0 96.9
1990 30 80.7 74.5 86.9 85.0 82.0
2000 30 94.7 95.7 91.9 90.6 93.1
Average 30 90.5 91.0 91.0 90.3 91.0
St. Dev. 30 6.6 9.5 3.9 4.0 5.6
CV 30 7.3 10.5 4.3 4.4 6.2
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Table 6. 90th Percentile Errors by Population

Growth Rate

Horizon -10% to 10% to

Target Year Length <-10% 10% 25% > 25% All
1930 10 35.6 17.3 27.2 44.5 29.1
1940 10 40.7 16.7 21.6 54.1 23.3
1950 10 19.6 21.6 27.6 37.8 24.9
1960 10 16.1 19.2 29.7 37.9 23.2
1970 10 23.9 17.2 17.5 31.2 21.0
1980 10 31.8 24.1 23.3 30.8 26.3
1990 10 12.4 13.5 16.1 20.6 15.6
2000 10 17.3 10.7 13.6 22.6 13.9
Average 10 24.7 175 22.1 34.9 22.2
St. Dev 10 10.2 4.3 5.9 11.1 5.2
CV 10 41.4 24.3 26.8 31.8 23.4
1940 20 69.7 25.4 44.8 86.7 47.2
1950 20 61.0 32.2 51.0 81.5 43.6
1960 20 44.9 45.4 57.8 74.0 50.9
1970 20 30.1 30.5 51.1 60.2 37.3
1980 20 56.8 35.2 34.7 50.5 45.7
1990 20 47.7 32.8 38.6 50.9 39.6
2000 20 27.9 195 25.5 37.4 24.6
Average 20 48.3 31.6 43.4 63.0 41.3
St. Dev. 20 15.5 8.1 11.1 18.2 8.6
CV 20 32.2 25.6 25.7 28.9 20.9
1950 30 71.9 43.5 82.6 145.0 78.7
1960 30 71.2 54.3 87.8 139.6 68.1
1970 30 61.6 60.6 82.6 136.6 68.3
1980 30 56.1 40.4 55.8 68.2 49.3
1990 30 72.2 46.5 53.0 70.1 60.6
2000 30 66.0 46.5 52.9 69.9 55.3
Average 30 66.5 48.6 69.1 104.9 63.4
St. Dev. 30 6.6 7.5 16.8 39.0 10.5
CV 30 9.9 15.3 24.3 37.2 16.6
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Table 7. Percentage of APEs Less Than the Predicted 90th Percentile Error by
Population Growth Rate

Horizon
Target Year Length <-10% -10% to 10% 10% to 25% > 25% All
1940 10 84.1 91.1 96.1 91.5 93.0
1950 10 93.8 82.9 85.0 98.6 88.4
1960 10 84.7 93.0 88.4 88.2 90.9
1970 10 75.3 90.5 95.8 93.0 92.2
1980 10 72.4 76.4 83.9 95.6 80.1
1990 10 99.5 98.6 97.9 97.0 98.5
2000 10 78.7 93.2 93.8 89.1 92.4
Average 10 84.1 89.4 91.6 93.3 90.8
St. Dev 10 9.8 7.4 5.7 4.0 5.6
CV 10 11.7 8.3 6.2 4.2 6.2
1950 20 93.7 84.7 93.6 93.1 91.5
1960 20 92.1 79.1 88.3 94.1 84.9
1970 20 91.0 96.7 95.5 91.5 95.3
1980 20 52.5 78.5 97.0 94.2 83.4
1990 20 95.7 91.7 90.1 93.2 94.0
2000 20 98.1 97.2 97.7 97.7 97.6
Average 20 87.2 88.0 93.7 94.0 91.1
St. Dev. 20 17.2 8.4 3.8 2.1 5.7
CV 20 19.7 9.6 4.1 2.2 6.3
1960 30 89.7 85.4 95.4 92.7 92.9
1970 30 92.7 86.1 95.4 93.8 89.9
1980 30 91.0 96.8 98.9 98.6 96.9
1990 30 67.8 77.2 90.3 89.5 82.0
2000 30 95.7 89.8 94.1 92.9 93.1
Average 30 87.4 87.1 94.8 93.5 91.0
St. Dev. 30 11.2 7.1 3.1 3.3 5.6
CV 30 12.8 8.2 3.3 3.5 6.2
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Appendix 1: Trend Extrapolation Techniques

We used the following forecasting techniques: linear (LIN), modified lindaN(,
share-of-growth (SHR), shift-share (SFT), exponential (EXP), consteme (COS), and
constant (CON). The linear technique (LIN) assumes that the population wethsec(decrease)
by the same number of persons in each future decade as the average per deesee inc
(decrease) observed during the base period:

1) R=R+x/y(R-R),

where Ris the population in the target yeayj$the population in the launch yeag,i®the
population in the base year, x is the number of years in the forecast horizon, and y ishitie num
of years in the base period.

The modified linear technique (MLN) initially equals the linear techniqueinbaddition
distributes the difference between the sum of the linear county forendsis andependent
national forecast proportionally by population size at the launch year:

2) R =LIN+ P /PR (P —ZLIN),
where i represents the county and j the nation.

The share-of-growth technique (SHR) assumes that each county’s share ofiquopulat
growth will be the same over the forecast horizon as it was during the baxg peri
3) Re=Ri +[(Pi—Rb) / (B —Ru)] (Pr— R,
while the shift-share technique (SFT) assumes that the average perdenagiein each
county’s share of the national population observed during the base period will continue
throughout the forecast horizon:

4) Re=Pe[Pa/ B+ (x/y) (R /B —Ro /Rl
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The exponential technique (EXP) assumes the population will grow (declined bsine
rate in each future decade as during the base period:
5) R=R€” r=[In(R/R)/Y,
where e is the base of the natural logarithm and In is the natural logarithm.

The constant-share technique (COS) assumes the county’s share of the national
population will be the same in the target year as it was in the launch year:
6) Re=(Ri/ I:1|) P,
while the constant technique (CON) assumes that the county population in thedargstlye
same as in the launch year:
7) R=R

Four of these techniques (MLN, SFT, SHR, and COS) require an independent national
forecast for the target year population. Since no set of national forecasts abttes launch
years and forecast horizons used in this study, we constructed a set by applyimear and
exponential techniques to the national population. We used an average of these twas f@secast

a forecast of the U.S. population.
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