Population Studies

Population Studies

Population forecast accuracy: Does the choice of summary measure of error matter?

Population projections are judged primarily by their accuracy. The most commonly used measure for the precision component of accuracy is the mean absolute percent error (MAPE). Recently, the MAPE has been criticized for overstating forecast error and other error measures have been proposed. This study compares the MAPE with two alternative measures of forecast error, the Median APE and an M-estimator. In addition, the paper also investigates forecast bias.

An Evaluation of Subcounty Population Forecasts in Florida

Population forecasts for subcounty areas are used for a wide variety of planning and budgeting purposes. Given the importance of many of these uses, it is essential to investigate which techniques and procedures produce the most accurate forecasts. In this report, we describe several simple trend extrapolation techniques and several averages and composite methods based on those techniques. We evaluate the precision and bias of forecasts derived from these techniques using data from 1970–2005 for subcounty areas in Florida.

Using Medicare data for short-run projections of the elderly population

As the elderly population of the United States grows in absolute number and as a proportion of total population, accurate projections of that population become increasingly important for sound policy decisions. Cohort component techniques are typically used for state and local projections of the elderly population, but are often outdated or even nonexistent for many local areas. This paper suggests an altemative approach, based on Medicare data and simple projection techniques.

An evaluation of population projection errors for census tracts

Population projections are widely used in both the public and private sectors for planning, budgeting, and analysis. For these purposes, projections are often needed for small areas such as census tracts, zip code areas or traffic analysis zones. Population size, growth constraints, shifting boundaries, and data availability create special problems for small-area projections, however, and very little is known about their forecasting performance.

The relationship between the length of the base period and population forecast errors

The base period of a population forecast is the time period from which historical data are collected for the purpose of forecasting future population values. The length of the base period is one of the fundamental decisions made in preparing population forecasts, yet very few studies have investigated the effects of this decision on population forecast errors. In this article the relationship between the length of the base period and population forecast errors is analyzed, using three simple forecasting techniques and data from 1900 to 1980 for states in the United States.

Toward a methodology for estimating temporary residents

Most population statistics for states, counties, and cities refer to permanent residents, or persons who spend most of their time in an area. At certain times, however, many states and local areas have large numbers of temporary residents who exert a significant impact on the area's economy, physical environment, and quality of life. Typically, very little is known about the number, timing, and characteristics of these residents.

Tests of forecast accuracy and bias for county population projections

This article deals with the forecast accuracy and bias of population projections for 2,971 counties in the United States. It uses three different population projection techniques and data from 1950, 1960,1970, and 1980 to make two sets of 10-year projections and one set of 20-year projections. These projections are compared with census counts to determine forecast errors. The size, direction, and distribution of forecast errors are analyzed by size of place, rate of growth, and length of projection horizon.

A review and evaluation of the housing unit method of population estimation

The housing unit (HU) method is used by public and private agencies throughout the United States to make local population estimates. This article describes many of the different types of data and techniques that can be used in applying the HU method, and it discusses the strengths and weaknesses of each. Empirical evidence from four different states is provided, comparing the accuracy of HU population estimates with the accuracy of other commonly used estimation techniques. Several conclusions are drawn regarding the usefulness of the HU method for local population estimation.

A comparison of population estimation methods

The housing unit (HU) method is often characterized as inferior to other methods for estimating the population of states and local areas. We believe this characterization must be challenged. In this article we evaluate population estimates produced by the housing unit method and by three other commonly used methods: component 11, ratio correlation, and administrative records.

A demographic analysis of the population growth of states, 1950-1980

State populations in the United States are characterized by large differences in current growth rates and historical growth trends. What demographic factors account for these differences? Population growth has only three components: births, deaths, and migration. In this study, we estimated the contributions of births, deaths, and migration to changes in population size between 1950 and 1980 for the 48 contiguous states in the United States.


Subscribe to RSS - Population Studies