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In social network analysis, the term “affiliations” usually refers to membership or participation data, such 
as when we have data on which actors have participated in which events. Often, the assumption is that co-
membership in groups or events is an indicator of an underlying social tie. For example, Davis Gardner 
and Gardner (1941) used data provided by the society pages of a local newspaper to uncover distinct 
social circles among a set of society women. Similarly, Domhoff (1967) and others have used co-
membership in corporate boards to search for social elites (e.g., Allen, 1974; Carroll, Fox and Ornstein, 
1982; Galaskiewicz, 1985; Westphal and Khanna, 2003). Alternatively, we can see co-participation as 
providing opportunities for social ties to develop, which in turn provide opportunities things like ideas to 
flow between actors. For example, Davis (1991; Davis and Greeve, 1997) studied the diffusion of 
corporate practices such as poison pills and golden parachutes. He finds evidence that poison pills diffuse 
through chains of interlocking directorates, where board members who sit on multiple boards serve as 
conduits of strategic information between the different firms. An important advantage of affiliation data, 
especially in the case studying elites, is that affiliations are often observable from a distance (e.g., 
government records, newspaper reports), without having to have special access to the actors.  
 
In this chapter, we focus on issues involving the analysis of affiliation data, as opposed to the collection 
or the theoretical interpretation of affiliation data. 
 

Basic Concepts & Terminology 
 
Affiliations data consist of a set of binary relationships between members of two sets of items. For 
example, the well-known dataset collected by Davis, Gardner and Gardner (1941) records which women 
attended which social events in a small southern town. Thus, there are two sets of items, women and 
events, and there is a binary relation that connects them, namely the “attended” relation. Figure 1 gives 
the Davis, Gardner and Gardner (henceforth, DGG) data matrix in its original form. The rows correspond 
to the women and the columns are the events they attended.  
 



 
Figure 1. DGG women-by-events matrix (Davis, Gardner and Gardner, 1941) 

 
 
In general, the kinds of binary relations we consider affiliations are limited to part/whole relations such as 
“is a member of” or “is a participant in” or “has” (in the sense of having a trait). Examples of affiliations 
data that have found their way into the social science literature include corporate board memberships 
(e.g., Mizruchi, 1983, 1992, 1996; Carroll, Fox and Ornstein, 1982; Davis, 1991; Lester and Canella, 
2006; Robins and Alexander, 2004; Westphal, 1998), attendance at events (e.g., Davis, Gardner and 
Gardner, 1941; Faust, Willber, Rowlee and Skvoretz, 2002), membership in clubs (e.g., McPherson, 
1982; McPherson and Smith-Lovin, 1986, 1987), participation in online groups (Allatta, 2003, 2005), 
authorship of articles (e.g., Gmür, M. 2006; Lazer, Mergel and Friedman, 2009; Newman, 2001), 
membership in production teams (Uzzi and Spiro, 2005), and even course-taking patterns of high school 
students (e.g., Field, Frank, Schiller, Riegle-Crumb, Muller, 2006).  In addition, affiliations data are well-
known outside the social sciences, as in the species-by-trait matrices of numerical taxonomy (Sokal and 
Sneath, 1973). 
 
We can represent affiliations as mathematical graphs (Harary, 1969) in which nodes correspond to entities 
(such as women and events) and lines correspond to ties of affiliation among the entities. Figure 2 
provides a representation of the DGG data. Affiliations graphs are distinctive in having the property of 
bipartiteness, which means that the graph’s nodes can be partitioned into two classes such that all ties 
occur only between classes and never within classes. We see in Figure 2 that there are only lines between 
women and the events which they attended. While all affiliation graphs are bipartite, in our view the 
reverse is not necessarily true. In empirical network data, graphs can be bipartite by chance alone, perhaps 
because of sampling error. What makes affiliation graphs different is that the two node sets are different 
kinds of entities, and the lack of ties within sets is by design, not happenstance. Formally, we define an 
affiliation graph as a bipartite graph G(V1,V2,E), in which V1 and V2 are sets of nodes corresponding to 
different classes of entities, and E is an affiliation relation that maps the elements of V1 to V2. The 
relation is typically conceived as a set of unordered pairs in which one element of each pair belongs to V1 
and the other belongs to V2. In contexts where we are discuss multiple graphs, we use the notation V1(G) 
to indicate the V1 node-set in graph G, and E(H) to refer to the ties in graph H. 



 
Figure 2. DGG women-by-events Graph 

 
Affiliation graphs or networks are often called “2-mode graphs”. The terminology of “modes” refers to 
the number of different kinds of entities referenced in the rows and columns of a matrix. A 1-mode matrix 
is square, its rows and columns refer to the same set of entities – a single mode.  An example, drawn from 
the famous Hawthorne studies (Roethlisberger and Dickson, 1939), is shown in Figure 3. 1

 
 

 I1 I3 W1 W2 W3 W4 W5 W6 W7 W8 W9 S1 S2 S4 
I1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
I3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
W1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 
W2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
W3 1 0 1 0 0 1 0 0 0 0 0 1 0 0 
W4 0 0 1 0 1 0 0 0 0 0 0 1 0 0 
W5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
W6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
W7 0 0 0 0 0 0 0 0 0 1 1 1 0 0 
W8 0 0 0 0 0 0 0 0 1 0 1 0 0 1 
W9 0 0 0 0 0 0 0 0 1 1 0 0 0 1 
S1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 
S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
S4 0 0 0 0 0 0 0 0 0 1 1 0 0 0 

 
Figure 3. 1 Mode Person-by-Person Positive Relationship Matrix 

                                                             
1 The node labels indicate whether the individual is an Inspector (I), a Worker (W), or a Supervisor (S).  



In contrast, a 2-mode matrix is rectangular and the rows and columns refer to two different sets of entities 
– two modes.  For example, Figure 4 shows a 2-mode, n-by-m person-by-group incidence matrix that is 
also based on the Hawthorne data. An incidence matrix has rows corresponding to nodes and columns 
corresponding to n-ary edges (also called hyperedges) that connect sets of nodes. In this case, the matrix 
indicates each individual’s membership in each of five different groups2

 

. The matrix clearly represents 
affiliations, and indeed all affiliation graphs can be represented as 2-mode matrices, where the two modes 
correspond to the affiliation graph’s two node sets.  

 Gr1 Gr 2 Gr 3 Gr4 Gr 5 
I1 1 0 0 0 0 
I3 0 0 0 0 0 
W1 1 1 1 0 0 
W2 1 1 0 0 0 
W3 1 1 1 0 0 
W4 1 1 1 0 0 
W5 0 0 1 0 0 
W6 0 0 0 1 0 
W7 0 0 0 1 1 
W8 0 0 0 1 1 
W9 0 0 0 1 1 
S1 0 1 1 0 0 
S2 0 0 0 0 0 
S4 0 0 0 0 1 

Figure 4. 2-mode Person-by-Group Matrix 
 

 
It is important to note that while affiliation graphs can be represented by 2-mode matrices, not all 2-mode 
matrices are considered affiliation graphs.  For example, a standard sociological case-by-variables matrix 
(e.g., person-by-demographics) might be seen as 2-mode, but would not normally be called affiliations. 
The term “affiliations” is reserved for the case when the data consist of some kind of participation or 
membership, as in people in events, projects, or groups.3

 

 In this chapter we focus on affiliations data, but 
the techniques we discuss apply to 2-mode data in general. 

Co-Affiliation 
 
In some cases, the purpose of collecting affiliations data is not to understand the pattern of ties between 
the two sets, but to understand the pattern of ties within one of the sets. It would seem perverse, in that 
case, to collect affiliations data, since by definition affiliations data do not include ties among members of 
either set. However, given affiliations data, we can in fact construct some kind of tie among members of a 
node set simply by defining co-affiliation (e.g., attendance at the same events, membership on the same 
corporate board) as a tie. For example, for the DGG dataset, we can construct a woman-by-woman matrix 

                                                             
2 The groups were constructed by the present authors for illustrative purposes, based on a clique analysis. 
 
3 This is not to imply that the data must binary as we could have data in which persons have a degree of membership 
or participation in various groups or events. 



S in which sij gives the number of events that woman i and woman j attended together (see Figure 5). If 
we like, we can then dichotomize so that there is a tie between two women if and only if they co-attended 
at least some number of events. Thus, affiliations data give rise to co-affiliation data, which constitute 
some kind of tie among nodes within a set. 
 

 
Figure 5. DGG women-by-women matrix of overlaps across events 

 
One justification for relying on co-affiliation is the idea that co-affiliation provides the conditions for the 
development of social ties of various kinds. For example, the more often people attend the same events, 
the more likely it is they will interact and develop some kind of relationship. Feld (1981) suggests that 
individuals whose activities are organized around the same focus (e.g., voluntary organization, 
workplaces, hangouts, family, etc.) frequently become interpersonally connected over time.  Physical 
proximity (which is simply co-affiliation with respect to spatial coordinates) is also clearly a major factor 
in enabling and, in the breach, preventing interaction (Allen, 1977). Another justification is almost the 
reverse of the first, namely that common affiliations can be the consequence of having a tie. For example, 
married couples attend a great number of events together, and belong to a great number of groups 
together, and indeed may come to share a great number of activities, interests and beliefs. Thus, co-
affiliation can be viewed as an observable manifestation of a social relation that is perhaps unobservable 
directly (such as feelings). 
 
If either of these justifications is valid, then we may collect affiliations data simply because it is more 
convenient than collecting direct ties among a set of nodes. For example, if we are interested in studying 
relationships among celebrities, we could try to interview them about their ties with other celebrities, but 
this could be quite difficult to arrange. If justifiable, it would most certainly be easier to simply read 
celebrity news and record who has attended what Hollywood social event, or who has worked on what 
project.  
 
In deciding whether to use affiliations data as a proxy for social relations, it is useful to think about the 
conditions under which any of these justifications is likely to prove valid. One consideration is the size of 
affiliation events. For example, suppose we have a person-by-club matrix indicating who is a member of 
which club. If the clubs are small (like a board of directors), then our justifications seem, well, justifiable. 
But if the clubs are large (on the order of thousands of members), co-membership may indicate very little 
about the social tie between a given pair of members. Two people can be members of all the same (large) 
clubs or attend all the same (large) events, and yet not even be aware of each other’s existence and never 
end up meeting. 
 

EVE LAU THE BRE CHA FRA ELE PEA RUT VER MYR KAT SYL NOR HEL DOR OLI FLO
EVELYN 8 6 7 6 3 4 3 3 3 2 2 2 2 2 1 2 1 1
LAURA 6 7 6 6 3 4 4 2 3 2 1 1 2 2 2 1 0 0
THERESA 7 6 8 6 4 4 4 3 4 3 2 2 3 3 2 2 1 1
BRENDA 6 6 6 7 4 4 4 2 3 2 1 1 2 2 2 1 0 0
CHARLOTTE 3 3 4 4 4 2 2 0 2 1 0 0 1 1 1 0 0 0
FRANCES 4 4 4 4 2 4 3 2 2 1 1 1 1 1 1 1 0 0
ELEANOR 3 4 4 4 2 3 4 2 3 2 1 1 2 2 2 1 0 0
PEARL 3 2 3 2 0 2 2 3 2 2 2 2 2 2 1 2 1 1
RUTH 3 3 4 3 2 2 3 2 4 3 2 2 3 2 2 2 1 1
VERNE 2 2 3 2 1 1 2 2 3 4 3 3 4 3 3 2 1 1
MYRNA 2 1 2 1 0 1 1 2 2 3 4 4 4 3 3 2 1 1
KATHERINE 2 1 2 1 0 1 1 2 2 3 4 6 6 5 3 2 1 1
SYLVIA 2 2 3 2 1 1 2 2 3 4 4 6 7 6 4 2 1 1
NORA 2 2 3 2 1 1 2 2 2 3 3 5 6 8 4 1 2 2
HELEN 1 2 2 2 1 1 2 1 2 3 3 3 4 4 5 1 1 1
DOROTHY 2 1 2 1 0 1 1 2 2 2 2 2 2 1 1 2 1 1
OLIVIA 1 0 1 0 0 0 0 1 1 1 1 1 1 2 1 1 2 2
FLORA 1 0 1 0 0 0 0 1 1 1 1 1 1 2 1 1 2 2



It should also be noted that in adopting co-affiliations as a proxy for social ties, we confound the concept 
of social proximity with that of social similarity, which in other contexts are treated as competing 
alternatives (Burt,1987; Friedkin,1984). To see that co-affiliations are similarities data, consider the 
woman-by-woman co-affiliation network in Figure 5, constructed from the original 2-mode woman-by-
event attendance data. For each pair of women, we look at their respective rows in X, and count the 
number of times that they have 1s in the same places. This is simply an unnormalized measure of 
similarity of rows. In effect, for any pair of women we construct a simple 2-by-2 contingency table as 
shown in Figure 6 that shows the relationship between their pair of rows.  
 

  Woman j  
  1 0  

Woman i 1 a b a+b 
0 c d c+d 

  a+c b+d n 
 

Figure 6. Contingency Table 
 

The quantity a gives the number of times that the pair of women co-attended an event. The quantity a+b 
gives the total number of events that woman i attended, and a+c gives the corresponding value for 
woman j. The quantity n is simply the number of events -- the number of columns in matrix X. A simple 
way to bound a between 0 and 1 and promote comparability across datasets is to simply divide a by n, as 
shown in Equation 1.  
 

n
aa =*  Equation 1 

 
Bounding a by the maximum possible score introduces the notion of other normalizations that take into 
account characteristics of the women such as the number of events they attended. For example, if woman 
i and woman j attend three events in common, and woman k and woman l do as well, we would likely 
regard the two pairs as equally close. But if we knew that i and j each only attended 3 events, whereas k 
and l each attended 14 events, intuition we would be more likely to conclude that the 100% overlap 
between i and j signals greater closeness than the 21% overlap between k and l.  
 
Therefore, if we wanted to normalize the quantity a for the number of events that each woman attended, 
we might divide a by the minimum of a+b and a+c, as shown in equation 2. The resulting coefficient 
runs between 0 and 1, where 1 indicates the maximum possible overlap given the number of events 
attended by i and j.  This approach takes into account that the number of overlaps between two women 
cannot exceed the number of events that either attended. 
 

),(
*

cabaMin
aaij ++

=  Equation 2 

 
Another well-known approach to normalizing a is provided by the Jaccard coefficient, which is described 
by Equation 3. It gives the number of events attended in common as a proportion of events that are 
“attendable”, as determined by the fact that at least one of the two women attended the event. 
 
 
 

cba
aaij ++

=*                      Equation 3 



 
Alternatively, we could take a+d as a raw measure of social closeness. By including d, we effectively 
argue that choosing not to attend a given event is as much of a statement of social allegiance as attending 
an event. A well-known normalization of a+d is given by Equation 4, which is equal to the simple 
Pearson correlation between rows i and j of matrix X.  
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Another approach, devised specifically for affiliations data, is provided by Bonacich (1972), who 
proposes normalizing the co-occurrence matrix according to Equation 5. Effectively, this measure gives 
the extent to which the overlap observed between i and j exceeds the amount of overlap we would expect 
by chance, given the number of events that i and j each attended. 
 
 

bcad
adbcaaij −

−
=* , for ad ≠ bc Equation 5 

 
All of these normalizations essentially shift the nature of co-affiliation data from frequencies of co-
occurrences to tendencies or revealed preferences to co-occur. If we interpret frequencies of co-
occurrences as giving the number of opportunities for interaction or flow of information or goods, then 
the raw, unnormalized measures are the appropriate indices for measuring co-affiliation. In contrast, if the 
reason for studying affiliations is that co-affiliations reveal otherwise unseen relationships between people 
(e.g., sociometric preferences), the normalized measures are the most appropriate, as they essentially give 
us the tendency or preference for a pair of women to co-occur while controlling for nuisance variables 
such as the number of times a woman was observed. The normalized measures tell us how often two 
women are co-attending relative to the number of times they could have.  
 
Consider the following hypothetical research project. Say that we are interested in analyzing connections 
between a group of 13 individuals based on their memberships in different social clubs (16 of them).  
Because we are interested in understanding relationships among the 13 individuals we convert the 
affiliations data (person-by-social club) into co-affiliations (person-by-person). We construct both a raw 
unnormalized co-affiliation matrix and a normalized co-affiliation matrix. Figure 7 is a graphical 
representation of the raw co-affiliation network using a standard graph layout algorithm. Individuals are 
labeled a thru m. A line connecting two individuals indicates that they are members of at least two of the 
same social clubs. Node size varies by the number of social clubs that each individual is a member of; 
thus the larger the node, the more socially active the individual. Figure 8 is a depiction of Jaccard 
coefficients for each pair of individuals, such that a line connecting two individuals indicates that their 
social club membership profiles are correlated at greater than 0.38.  



  
Figure 7. Co-membership in 2 or more social clubs. Nodes size is based on number of social clubs that each 
individual is a member of. 
 

 

Figure 8. Spring Embedding of Jaccard Coefficients. An edge is shown if cij > 0.38.  
Nodes size is based on number of social clubs that each individual is a member of. 

 
The raw co-affiliation network (presented in Figure 7) can be described as a core periphery structure in 
that there are a set of core individuals who are members of multiple social clubs (persons e,f,g,h,i) 
surrounded by a collection of less connected individuals. We see that there are opportunities for 
interaction between many of the 13 individuals.  However, the high social activity of the core individuals 
places them in the middle of the graph which tends to obscure any subgrouping structure.  Now consider 
the Jaccard similarity network (presented in Figure 8). This graph effectively highlights that there are two 
groupings of individuals with different membership profiles.  The graph also effectively reveals the 
bridging role of individual i, which was not at all discernable when visualizing unnormalized co-
occurrences among the individuals (see Figure 9).  
 
Another kind of normalization worth mentioning has to do with the size of the events (or social clubs) 
that the individuals are affiliated with. If, in analyzing co-affiliation data, we are taking the point of view 
that greater co-affiliation creates more opportunities for social ties to develop, then when measuring 
person-to-person co-affiliations, we would probably want to take into account the relative sizes of 
different events. For example, in the DGG data if two women co-attend an event that included just five 
people in total, it would seem that the likelihood of being aware of each other, of meeting, and indeed of 
changing their relationship is reasonably high. We would want to give that event a lot of weight. On the 
other hand if the same women co-attend an event in which thousands are present (such as a concert), we 
might want to weight that very little. An obvious approach, then, is to weight events inversely by their 
size. Thus, in Figure 6, the quantity n becomes the sum of weights of all events, and the quantity a is the 



sum of weights of the events that were co-attended by i and j. The measures described by equations 1 to 4 
can then be computed without modification. 

 
Table 1 summarizes which normalization approaches are appropriate given one’s attitude toward the 
nature of the co-affiliation data. For convenience, it is assumed that the 2-mode affiliations data are actor-
by-event, and that we are interested in constructing the actor-by-actor co-affiliation matrix. As such, we 
refer to the actors/rows as “variables” and the events/columns as “cases”. Therefore, the first kind of 
normalization discussed above can be referred to as “variable normalization” and the second as “case 
normalization”. 
 

Table 1. Appropriate normalizations by view of data 
 

Co-Affiliation as Opportunity Co-Affiliation as Indicator 
• No normalization 

(simple overlap counts) 
• Case normalization (e.g., 

weighting inversely by 
event sizes) 

• Variable normalization 
(e.g., Jaccard or Pearson 
correlations) 

 

 
 

Analysis of Co-Affiliation 
 
Having constructed a co-affiliation matrix, we would typically want to analyze the data using all the tools 
of social network analysis – as with any other kind of tie. For the most part, this is unproblematic, aside 
from the caveats already voiced. The biggest issue we typically encounter is that the co-affiliation matrix 
is valued and many network analytic techniques assume binary data – particularly those techniques with 
graph-theoretic roots. In those cases, the data will need to be dichotomized, and since the level of 
dichotomization is arbitrary, the normal procedure is to dichotomize at different levels and obtain 
centrality measures for networks constructed with different thresholds for what is considered a tie. In 
other cases, there will be no need for dichotomization. For example, eigenvector centrality (Bonacich, 
1972) and beta centrality (Bonacich 1987, 2007), are quite happy to accept valued data, particularly when 
the values are “positive” in the sense that larger values can be interpreted as enhancing flows or 
coordination. Other centrality measures need to be modified to work with valued data. In general, 
measures based on lengths of paths, such as betweenness and closeness centrality, can easily be modified 
to handle valued data, provided the data can be sensibly transformed into distances or costs (Brandes, 
2001). For example, the number of events co-attended by two women can be subtracted from the number 
of events in total and then submitted to a valued betweenness analysis.  
 
Another possible difficulty with co-affiliation data is that similarity metrics tend to have certain 
mathematical properties that social networks in general need not have. For example, most similarity 
metrics are symmetric so that s(u,v) = s(v,u). We can construct non-symmetric similarity measures, but 
these are rarely used and none of the ones we consider above are non-symmetric. Similarity matrices such 
as Pearson correlation matrices have numerous other properties as well, such as being positive semi-
definite (e.g., all eigenvalues are non-negative). The main consequence is that the norms or baseline 
expectations for network measures on co-affiliation data should not be based on norms or expectations 
developed for sociometric data in general (cf Wang, Sharpe, Robins and Pattison, 2009). 
 
At this point, we leave the discussion of co-affiliation data, and focus entirely on visualizing and 
analyzing affiliation graphs directly without converting to co-affiliations. 



Direct Visualization of Affiliation Graphs 
 
Affiliation graphs are typically visualized using the same graph layout algorithms used for ordinary 
graphs. In principle, certain algorithms, such as spring embedders or multidimensional scaling of path 
distances, should be less than optimal when applied to bipartite graphs because these algorithms place 
nodes in space such that distances between them are loosely proportional to the path distances that 
separate them. Since nodes belonging to the same node-set are necessarily a minimum of two links apart, 
we might expect some difficulty in detecting grouping in bipartite graphs.  In practice, however, this is 
not a problem and ordinary graph layout algorithms work well on bipartite graphs. 
 
The only adjustment that we typically have to make for affiliations data is to visually distinguish the two 
node sets, such as by using different colors and shapes for node symbols of different sets. For example, 
Figure 2 shows a visualization of the DGG dataset using the spring embedding procedure in NetDraw 
(Borgatti, 2002). Women are represented by circles and events are represented by squares. In the figure, 
we can see a group of women on the far right together with a group of events (E1 through E5) that only 
they attend. On the left, one can see another group of women who also have their exclusive events (E10 
through E14). In the middle of figure are four events (E6 through E9) that are attended by both groups of 
women. The figure also makes clear that Olivia and Flora are a bit separate from the rest of the network, 
and structurally similar because they attended exactly the same events.  
 
Another approach is to use a 2-mode multivariate analysis technique such as correspondence analysis to 
locate nodes. Correspondence analysis delivers a map in which points corresponding to both the n rows 
and m columns of an n-by-m 2-mode matrix are represented in a joint space. Computationally, 
correspondence analysis consists of a double-normalization of the data matrix to reduce the influence of 
variation in the row and column sums, followed by a singular value decomposition. The result is that, in 
the case of a woman by event matrix, two women will be placed near each other to the extent they have 
similar event profiles, controlling for the sizes of the events, and two events will be near other if they tend 
to have similar attendee profiles, controlling for the overall participation rates of the attendees. In the case 
of the DGG dataset, correspondence analysis gives the diagram shown in Figure 10. As a general rule, the 
advantage of correspondence representations is that, in principle, the map distances are meaningful and 
can be related precisely back to the input data. This is not the case with most graph layout algorithms, as 
they respond to multiple criteria such as avoiding the placement of nodes right on top of each other or 
keeping line lengths approximately equal. The disadvantage of correspondence analysis layouts is that 
they can be less readable. For example, in Figure 10, Olivia is obscured by Flora, and the (accurate) 
portrayal of exactly how different Flora, Olivia and Event 11 are from the rest makes the majority of the 
display very hard to read. 
 



 
Figure 10. Correspondence Analysis of 2-mode DGG Matrix. 

 

Direct Analysis of Affiliation Graphs 
 
There are several different approaches to analyzing affiliations data without converting to co-affiliations. 
Since affiliation graphs are graphs, an obvious approach is to simply use all the standard algorithms and 
techniques in the network analysis toolkit that apply to graphs in general. In doing this, we effectively 
assume that either the special nature of affiliation graphs will not affect the techniques, or that we can 
pretend that ties within node-sets could have occurred and just didn’t. This approach works for a small 
class of methods, but by no means all. A case where it does not work is measuring transitivity: 
Calculating transitivity fails because transitive triples are impossible in bipartite graphs (all ties are 
between node sets, which means that if ab and bc then a and c must be members of the same class, 
and therefore cannot be tied, making transitivity impossible).  
 
An alternative approach is to develop new metrics and algorithms specifically designed for the bipartite 
case (affiliation graphs), taking into account the fact that the observed network is not just bipartite by 
happenstance but design — similar to the concept of structural zeros in log-linear modeling. This sounds 
like a great deal more work, but in practice it is often possible to adjust metrics designed for general 
graphs by simply applying an appropriate post hoc normalization. This is the strategy we shall take in 
applying centrality metrics to affiliations data. In other cases, a wholly different approach must be 
constructed. For example, for the case of measuring transitivity, we might redefine transitivity in terms of 
quadruples such that a quad is called transitive if ab, bc, cd and ad.  
 

Centrality 
 
As discussed elsewhere in this book (cf Hanneman and Riddle’s chapter), centrality refers to a family of 
properties of node positions. A number of centrality concepts have been developed, together with their 
associated measures (Borgatti and Everett, 2006). In this section, we consider the measurement of four 
well-known centrality measures. 
 



Degree. In ordinary graphs, degree centrality, di, is defined as the number of ties incident upon a node i. 
In the affiliations case, of course, the degree of a node is the number of ties it has with members of the 
other node set. So in the DGG data, for women, it is the number of events they attended, and for events, it 
is the number of women who attended. If we represent affiliations as a bipartite graph, we can compute 
degree centrality as usual and obtain perfectly interpretable values, at least with respect to the raw counts. 
However, it is usual to normalize centrality measures by dividing by the maximum value possible in a 
graph of that size. For ordinary graphs, this value is n-1, where n is the number of nodes in the graph. 
However, for affiliation graphs, this is not quite right because a node cannot have ties to its own node set, 
and so the value of n-1 cannot be attained.4

 

 The maximum degree is always the size of the other node set. 
In the DGG dataset, the maximum possible degree for a woman is the number of events (14), and the 
maximum possible degree for an event is the total number of women (18).Therefore, to normalize degree 
centrality in the case of affiliations data, we must apply two separate normalizations depending on which 
node set a node belongs to, as shown in Equation 6.  
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The key benefit of normalizing degree centrality in this way is that we can not only assess the relative 
centrality of two women or two events, but also whether a given woman is more central than a given 
event. Without such normalization, nodes with equal propensities to have ties could only have equal 
degrees if the node sets were the same size. However, while normalization handles the mathematical 
issues in comparability, the substantive interpretation of a woman’s centrality relative to an event’s is still 
an issue, and depends on the details of the research setting. For example, it may be that the events are 
open to all, and ties in the affiliation graph reflect a woman’s agency only in choosing which events to 
attend. In this case, if a woman has greater degree than a given event, we might say that her 
gregariousness is greater than the event’s attractiveness, although this implies that the degree centrality 
measurement does not measure the same thing for women as for events, which runs counter to the basic 
idea in the direct analysis of affiliation graphs. On the other hand, the events might be by invitation only, 
in which case both women and events have a kind of agency. In general, centrality measures in this 
context have the most straightforward interpretations when the affiliations result from some kind of 
bilateral matching process, such as speed dating. 
 
Closeness. In ordinary graphs, closeness centrality, ci, refers to the sum of geodesic distances from node i 
to all n-1 others in the network. As such, it is an inverse measure of centrality in which greater centrality 
is indicated by a lower score. The lowest score possible occurs when the node has a tie to every other 
node, in which case the sum of distances to all others is n-1. To normalize closeness centrality, we usually 
divide the raw score into n-1, which simultaneously reverses the measure so that high scores indicate 
greater centrality.5

 
  

As with degree centrality, raw closeness can be calculated in affiliation graphs using the same algorithms 
we use for any graph. But, also like degree centrality, we must do something different to normalize 
closeness in the affiliation case. In affiliation graphs, the closest that a node can be to all others is n2 + 

                                                             
4 Except when for nodes that are in the only members of their special case where one vertex set contains just one 
node sets. 
5 Of course, this is a non-linear transformation, unlike all other centrality normalizations. To maintain consistency 
we could instead divide raw closeness by its maximum and simply remember that it is a reverse measure. 



2(n1-1), which is distance 1 from all nodes in the other node set and distance 2 from all other nodes in its 
own set. Therefore, to normalize (and simultaneously reverse) closeness in the bipartite case, we divide 
the raw closeness of a node in V1 into n2 + 2(n1-1) and the raw closeness of a node in V2 into n1 + 2(n2-
1), as shown in Equation 7 in which ci represents raw closeness centrality, and n1 and n2 represent the 
number of nodes in each node set. 
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Equation 7 

 
Using the DGG dataset for illustration, we can see that the maximum number of nodes that can be 
distance 1 from a woman is 14 (since there are 14 events), and the maximum number of nodes that can be 
distance 2 from any of the 18 women is 17 (since there are 18 women). Thus, the theoretical minimum 
value of closeness centrality for a woman is 14+2*(18-1), and the theoretical minimum value for an event 
is 18+2*(14-1).  
  
Betweenness. In any graph, betweenness centrality, bi, refers to the “share” of shortest paths in a network 
that pass through a node i, as given by Equation 8.  
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To normalize betweenness, we divide by the maximum possible value, which in the case of an ordinary 
graph is achieved by the center of a star-shaped network, as shown in Figure 11.  
 

 
 

Figure 11. Star-shaped network 
 
In the bipartite case, unless one node set contains just one node, an affiliation graph cannot attain that 
level of centralization. As a result, the maximum possible betweenness for any node in a bipartite graph is 
limited by the relative size of the two node sets, as given by Equation 9. To normalize betweenness, we 
simply divide bi by the denominator in Equation 9 corresponding to its node set. 
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Eigenvector. Eigenvector centrality, ei, is defined as the principal eigenvector of the adjacency matrix of a 
graph (Bonacich, 1972), as defined by Equation 10. In eigenvector centrality, a node’s score is 
proportional to the sum of the scores of its neighbors. In a bipartite graph such as DGG, this means a 
woman’s centrality will be proportional to the sum of centralities of the events she attends, and similarly 
the centrality of an event will be proportional to the centralities of the women who attend it. As a result, 
eigenvector centrality applied to the adjacency matrix of an affiliation graph is conceptually and 
mathematically identical to singular value decomposition (Eckhardt and Young, 1936) of the 2-mode 
incidence matrix.6

 

 In addition, both of these are equivalent to an eigenvector analysis of the simple co-
affiliation matrix 

 ∑= jiji eae λ
 

where λ is the principal eigenvalue of A 
Equation 10 

 
Empirical Illustration of Centrality Measures. As an illustration, Figure 12 presents normalized centrality 
scores for all four types of centrality discussed above for the DGG bipartite graph presented in Figure 2. 
Note that three events (E8, E9, and E7) are more central than any of the women on all of the measures 
except for normalized degree centrality. It is also worth highlighting that E7 has 10 ties while Nora has 
only 8, but Nora has a slightly higher normalized degree centrality because there are fewer events than 
women, so her 8 represents a greater percentage of the possible ties.  
 

Node No. of Ties Normalized 
Degree 

Normalized 
Closeness 

Normalized 
Betweenness 

Normalized 
Eigenvector 

E8 14 0.78 0.85 0.24 0.51 
E9 12 0.67 0.79 0.23 0.38 
E7 10 0.56 0.73 0.13 0.38 
Nora 8 0.57 0.80 0.11 0.26 
Evelyn 8 0.57 0.80 0.10 0.33 
Theresa 8 0.57 0.80 0.09 0.37 
E6 8 0.44 0.69 0.07 0.33 
Sylvia 7 0.50 0.77 0.07 0.28 
Laura 7 0.50 0.73 0.05 0.31 
Brenda 7 0.50 0.73 0.05 0.31 
Katherine 6 0.43 0.73 0.05 0.22 
E5 8 0.44 0.59 0.04 0.32 
Helen 5 0.36 0.73 0.04 0.20 
E3 6 0.33 0.56 0.02 0.25 
Ruth 4 0.29 0.71 0.02 0.24 
Verne 4 0.29 0.71 0.02 0.22 
E12 6 0.33 0.56 0.02 0.20 

                                                             
6 In addition, singular value decomposition yields the measures of hubs and authorities proposed by Kleinberg 
(1999). As a result, in affiliations data, eigenvector centrality and hubs and authorities are identical concepts, which 
is not true in ordinary graphs. 



Myrna 4 0.29 0.69 0.02 0.19 
E11 4 0.22 0.54 0.02 0.09 
Eleanor 4 0.29 0.67 0.01 0.23 
Frances 4 0.29 0.67 0.01 0.21 
Pearl 3 0.21 0.67 0.01 0.18 
E4 4 0.22 0.54 0.01 0.18 
Charlotte 4 0.29 0.60 0.01 0.17 
E10 5 0.28 0.55 0.01 0.17 
Olivia 2 0.14 0.59 0.01 0.07 
Flora 2 0.14 0.59 0.01 0.07 
E2 3 0.17 0.52 0.00 0.15 
E1 3 0.17 0.52 0.00 0.14 
Dorothy 2 0.14 0.65 0.00 0.13 
E13 3 0.17 0.52 0.00 0.11 
E14 3 0.17 0.52 0.00 0.11 

Figure 12. Normalized centrality scores for the DGG affiliation graph. 
 

Cohesive Subgroups 
 
Cohesive subgroups refer to dense areas in a network that typically have more ties within group than with 
the rest of the network. Affiliations data pose special problems for cohesive subgroup analysis because 
the area around any given node can never be very dense since none of a node’s “friends” can be friends 
with each other. As a result, some traditional graph-theoretic methods of finding subgroups need to be 
modified for the bipartite case. 
 
One of the most fundamental subgroup concepts is that of a clique (Luce and Perry, 1949). A clique is 
defined as a maximally complete subgraph, which means that every member of the clique has a tie to 
every other (a property known as completeness), and there is no other node that could be added to the 
subgraph’s set of vertices without violating the completeness requirement (this is the property of 
maximality). Cliques of large size are rare in ordinary graphs, and they are impossible in bipartite graphs. 
As a result, applying ordinary clique algorithms to affiliation graphs is not useful. 
 
One solution is to use the n-clique concept, which is a relaxation of the clique idea. In an n-clique, we do 
not require each member of the clique to have a direct tie with every other, but instead that it be no more 
than distance n from every other. Choosing n = 2 gives us subgroups in which every pair of nodes are 
within 2 links of each other. Applied to an ordinary graph, this yields subgroups that are “looser” than 
ordinary cliques, meaning that they are less than 100% dense. However, when applied to an affiliation 
graph, a 2-clique can be regarded as complete, since all possible ties are present, due to the constraints of 
bipartite graphs. For this reason, Borgatti and Everett (1997) give 2-cliques in affiliation graphs a name of 
their own, the bi-clique. Effectively, a bi-clique is to affiliation graphs what a clique is for ordinary 
graphs. 
 
Since bi-cliques can be numerous and overlapping, it is often useful to perform a secondary analysis by 
constructing a node-by-clique matrix, and correlating the profiles of each node across bi-cliques so that 
nodes that are members of many of the same bi-cliques will be given a high correlation. This correlation 
matrix can then be treated as a valued adjacency matrix and visualized using standard graph layout 
algorithms. Figure 13 shows the result of such an analysis. The results are striking in the way they 
differentiate between two groups of women tied to two distinct groups of events. In addition, the diagram 
clearly shows the separation of Flora and Olivia, and the bridging position of Ruth.  
 



 

 
Figure 13. A tie indicates that the correlation between two nodes is greater than 0.60. 

 

Structural Equivalence 
 
Structural equivalence refers to the extent that pairs of nodes have ties to the same third parties. In 
affiliation graphs such as the DGG dataset, actors are structurally equivalent to the extent they attend the 
same events, and events are structurally equivalent to the extent they are attended by the same actors. 
Strictly speaking, in affiliation graphs there can be no equivalence between nodes of different node-sets, 
since they cannot have any nodes in common. As a result, structural equivalence analyses of affiliation 
graphs are virtually identical to analyses of the actor-by-actor and event-by-event co-affiliation matrices. 
For example, a standard approach to measuring structural equivalence in ordinary graphs is to correlate 
the rows (and columns) of the adjacency matrix, and then do a hierarchical cluster analysis of the 
correlation matrix to identify blocks of approximately equivalent nodes. If we take this approach to the 
(n+m) by (n+m) adjacency matrix of an affiliation graph, we are virtually guaranteed to find the two 
modes of the affiliations dataset as the dominant partition in the hierarchical clustering. The next partition 
will then split one of the two node sets, and so on. In the end, the results are essentially the same as if we 
had simply clustered each the co-affiliation matrices separately. 
 
An alternative approach to structural equivalence is blockmodeling (White, Boorman and Breiger, 1976). 
In ordinary graphs, blockmodeling refers to partitioning the rows and columns of the adjacency matrix 
such that those corresponding to nearly equivalent nodes are placed in the same classes, as shown in 
Figure 14.. Partitioning the rows and columns based on structural equivalence has the effect of 
partitioning the cells of the adjacency into matrix blocks that have a characteristic pattern of 
homogeneity: either all of the cells in the block are 1s (called 1-blocks), or they all 0s (called 0-blocks). 
The job of a blockmodeling algorithm is to find a partitioning of the rows and columns that makes each 
matrix block as homogeneous as possible (Borgatti and Everett, 1992). 
 



 
 

Figure 14. Structural equivalence blockmodeling in an ordinary adjacency matrix 
 
Applying this approach directly to affiliation graphs would mean partitioning the rows and columns of the 
(n+m)-by-(n+m) bipartite adjacency matrix B. This can be done, but the bipartite structure imposes 
certain constraints. For example, matrix blocks involving within-mode ties (e.g., woman-to-woman, 
event-to-event) are necessarily 0-blocks. In addition, the best 2-class partition will almost certainly be the 
mode partition (except in trivial cases), and in general, all other partitions will be refinements of the mode 
partition (i.e., they will be nested hierarchically within the mode partition). 
 
A more elegant (and computationally efficient) approach is to work directly from the 2-mode incidence 
matrix X (Borgatti and Everett, 1992). To do this, we redefine the concept of a blockmodel to refer to not 
one but two independent partitions, one for the rows and one for the columns. We then apply an algorithm 
to find the pair of partitions that yield the most homogeneous matrix blocks. In other words, a structural 
equivalence blockmodeling of the 2-mode incidence matrix is one in which row nodes are in the same 
class if they have similar rows, and column nodes are in the same class if they have similar columns. An 
example involving 4 classes of rows and 3 classes of columns is shown in Figure 15.  
 

 
 

Figure 15. 2-mode structural equivalence blockmodel.  
 
 

Regular Equivalence 
 
In ordinary graphs, the idea of regular equivalence is that a pair of equivalent nodes is connected not 
necessarily to the same nodes (as in structural equivalence), but to equivalent nodes (White and Reitz, 

A1 A2 A3 B1 B2 B3 B4 C1 C2 C3
A1 0 0 0 1 1 1 1 0 0 0
A2 0 0 0 1 1 1 1 0 0 0
A3 0 0 0 1 1 1 1 0 0 0
B1 1 1 1 0 0 0 0 1 1 1
B2 1 1 1 0 0 0 0 1 1 1
B3 1 1 1 0 0 0 0 1 1 1
B4 1 1 1 0 0 0 0 1 1 1
C1 1 1 1 1 1 1 1 0 0 0
C2 1 1 1 1 1 1 1 0 0 0
C3 1 1 1 1 1 1 1 0 0 0

E1 E2 E3 F1 F2 F3 F4 G1 G2 G3
A1 1 1 1 1 1 1 1 0 0 0
A2 1 1 1 1 1 1 1 0 0 0
A3 1 1 1 1 1 1 1 0 0 0
B1 1 1 1 0 0 0 0 0 0 0
B2 1 1 1 0 0 0 0 0 0 0
B3 1 1 1 0 0 0 0 0 0 0
B4 1 1 1 0 0 0 0 0 0 0
C1 0 0 0 1 1 1 1 0 0 0
C2 0 0 0 1 1 1 1 0 0 0
C3 0 0 0 1 1 1 1 0 0 0
D1 0 0 0 1 1 1 1 1 1 1
D2 0 0 0 1 1 1 1 1 1 1



1983). In other words if node u and v are perfectly regularly equivalent, then if u has a friend p, we can 
expect v to have a friend q that is equivalent to p. In blockmodeling terms, this translates to a partitioning 
of the rows and columns of the adjacency matrix such that the resulting matrix blocks are either 0-blocks, 
or a special kind of 1-block in which every row and column in the matrix block has at least one 1.  
 
In the case of structural equivalence, it was possible to apply the concept to the adjacency matrix of an 
affiliations graph, making it possible to use existing algorithms/programs to compute it. In the case of 
regular equivalence, there is a complication. Regular equivalence defines a lattice of partitions that all 
have the regularity property (Borgatti and Everett, 1989). Most standard regular equivalence algorithms 
deliver the maximum regular equivalence. Unfortunately, in undirected data, which is normally the case 
with affiliations graphs, the maximum regular equivalence is always trivial, placing all nodes in the same 
class. There are ways of handling this, but a better approach is to redefine regular equivalence for 2-mode 
incidence matrices, as developed by Borgatti and Everett (1992); As we did with structural equivalence, 
we redefine the concept of a blockmodel to refer to not one but two independent partitions, one for the 
rows and one for the columns. Regular equivalence implies that we can section the matrix into rectangular 
blocks such that each block is a 0-block or a regular 1-block. For example, if the affiliations graph 
indicates which consumers visit which restaurants, the 2-mode regular blockmodel shown in Figure 16 
identifies four different types of consumers that visit three kinds of restaurants. Consumers of the same 
type do not necessarily visit the same restaurants, but they do visit the same kinds of restaurants. Thus all 
consumers in the first class visit the first two kinds of restaurants, while all consumers in the second class 
visit only the first and third kinds of restaurants. 
 

 
Figure 16. A 2-mode regular equivalence blockmodel. 

 

2-Mode Relational Algebras 
 
In social network analysis, the term ‘relational algebra’ is typically used very loosely to refer to the 
composition of relations. For example, if we measure both friendship and teacher of relations among a set 
of nodes, we can construct new, compound relations that link the actors, such as ‘friend of a teacher of’ or 
‘teacher of a friend of’, as well as ‘friend of a friend’ and ‘teacher of a teacher of’. If the relations are 
represented as adjacency matrices, the composition relation can be equated to Boolean matrix 
multiplication7

                                                             
7 Boolean multiplication is simply ordinary matrix multiplication in which the resulting matrix is dichotomized so 
that any value greater than 0 is assigned a 1.  

 of the adjacency matrices, so that if F represents the friendship relation and T represents 
the teacher of relation, then the Boolean matrix product FT represents the ‘friend of a teacher of’ relation. 

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 
C1 1 0 1 0 1 1 0 0 0 0 
C2 0 0 1 0 0 1 0 0 0 0 
C3 0 1 0 1 1 0 1 0 0 0 
C4 1 0 0 0 0 0 0 0 1 1 
C5 1 0 1 0 0 0 0 1 1 0 
C6 0 1 0 0 0 0 0 0 1 1 
C7 0 1 1 0 0 0 0 1 0 1 
C8 0 0 0 0 1 1 0 0 0 0 
C9 0 0 0 0 0 1 0 0 0 0 

C10 0 0 0 1 1 0 1 0 0 0 
C11 1 0 1 1 0 1 0 0 1 1 
C12 0 1 0 0 1 0 1 1 0 1 



Since the result of a composition is just another relation, we can construct compositions of compositions, 
yielding a long string of Boolean matrix products. For example, the string FTT’F’ gives a relation in 
which, if u is tied to v via this relation, it indicates that v is liked by a student of someone who is teacher 
of a friend of u. (Note that the transpose T’ is used to represent the inverse relation ‘is taught by’.) 
 
Relational composition is also possible with affiliations data, provided the incidence matrices are 
conformable. For example, suppose we have a binary person-by-organization matrix M indicating which 
persons are members of which organizations. Suppose we also have an organization-by-event matrix S, 
which indicates which organizations were sponsors of which events. Finally, suppose we have a person-
by-event matrix A indicating which person attended which event. The product MS is a new matrix in 
which MS(u,v) > 0 indicates that person u belongs to at least one organization which sponsored event v. 
In a given research setting, we might use MS to explain matrix A – i.e., test the hypothesis that people are 
more likely to attend events that are sponsored by their organizations.  
 
Relational algebras can incorporate a mix of affiliation and ordinary networks. For example, if we also 
had a matrix F indicating which persons were friends with which others, we could generate compositions 
such as FMS, in which FMS(u,v) > 0 indicates that a person u has a friend who is a member of an 
organization that sponsors an event v. Krackhardt and Carley (1998) use compositions of this type in their 
PCANS model, which relates persons, tasks and resources to each other, including person-person 
communications and task-task dependencies. For example if matrix A indicates which person is assigned 
to which task, and matrix P indicates which task precedes another, then the product AP relates each 
person u to each task v, indicating whether person u has a task that precedes task v. The triple product 
APA’ relates each person u to each person v, indicating whether person u has a task that precedes a task 
that person v does – i.e., it indicates whether person v is dependent on person u to get their work done. 
 

Conclusion 
 
In this chapter we provide an introduction to the analysis of affiliations data. Two basic approaches are 
discussed: a conversion approach and a direct approach. The conversion approach consists of analyzing 
co-affiliations or similarities among elements of one node-set with respect to their profiles across the 
other node-set. The similarities are then treated as ties among the nodes. Co-affiliations are frequently 
analyzed to identify opportunities for interaction (e.g., the flow of goods or information) or unseen 
relationships between people (e.g., sociometric preferences). The direct approach consists of analyzing 
both node-sets simultaneously, treating the elements of each on an equal footing. As discussed, the direct 
approach often requires the use of new metrics and algorithms specifically designed for bipartite graphs. 
 
Our survey has focused on analysis, and within that, measurement of network concepts such as centrality, 
cohesive sub-groups, structural equivalence, and regular equivalence. In doing so, we have ignored 
statistical modeling, such as the nascent field of exponential random graph models for affiliation data (see 
Robins’ chapter in this book for a more detailed discussion).  
 
We close with suggestions for future analyses of affiliations data.  One element that is under-explored in 
affiliations work is the temporal dimension. There are two important ways in which time can be brought 
into affiliation analysis. First, there is the case of affiliation graphs changing over time. We can 
conceptualize this as a series of person-by-organization matrices representing different slices of time, or a 
single 3-mode affiliation network in which each tie links together a person, an organization and time 
period. Many of the direct analysis techniques discussed in this can be generalized to this 3-mode case 
(Borgatti and Everett, 1992).   
 



The other important case is in the analysis of 2-mode person by event data, where the events are ordered 
in time. For example, if we study Hollywood film projects, we typically have a data matrix that is actor by 
film, and the films ordered by release date (or start date, etc). If we are interested in how actors’ previous 
collaboration ties affect the quality of a film project they are jointly engaged in, we need to construct the 
collaboration network continuously over time, since we would not want to predict film success based on 
collaborations that occur after the film was produced. Social network analysis software such as UCINET 
(Borgatti, Everett and Freeman, 2002) are just beginning to include tools for these kinds of analyses.  
 
Another example of time-ordered affiliations data occurs in the study of career trajectories. Taking the 3-
mode approach we can examine how actors’ co-location (in terms of both organization and time) ties 
affect their future careers. Or we can look at how individuals flow from organization to organization 
along directed paths. Here, the organizations can be ordered in time differently for each individual, 
although a key research question is whether an underlying ordering of the organizations (such as status) 
creates consistency in individual career moves. 
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