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A b s t r a c t  

Network analysis is distinguished from traditional social science by the dyadic nature of the standard data 
set. Whereas in traditional social science we study monadic attributes of individuals, in network analysis we 
study dyadic attributes of pairs of individuals. These dyadic attributes (e.g. social relations) may be represented 
in matrix form by a square l-mode matrix. In contrast, the data in traditional social science are represented as 
2-mode matrices. However, network analysis is not completely divorced from traditional social science, and 
often has occasion to collect and analyze 2-mode matrices. Furthermore, some of the methods developed in 
network analysis have uses in analysing non-network data. This paper presents and discusses ways of applying 
and interpreting traditional network analytic techniques to 2-mode data, as well as developing new techniques. 
Three areas are covered in detail: displaying 2-mode data as networks, detecting clusters and measuring 
centrality. 
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1. Introduction 

According to Wellman (1988), social network analysis differs from traditional social 
science in that traditional social science studies personal attributes whereas network 
analysis studies social relations. While we agree with this distinction, as methodologists, 
we would prefer to put it another way. In our view, it is better to say that traditional 
social science studies attributes of  INDIVIDUALS (call these monadic attributes) 
whereas network analysis studies attributes of  PAIRS OF INDIVIDUALS (call these 
dyadic attributes). Social relations are just one type of  dyadic attribute. Other members 
of  this set are distances (such as miles between cities), and similarities (such as 
correlations among respondents' responses across a set of  questionnaire items). 

Even in the case of  social relations, the data that are actually collected are attributes 
of  the relation, not the relation itself. For example, for the case of  the friendship relation, 
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researchers might measure (for each pair of  actors) the strength of the friendship 
(Krackhardt, 1990), which is one particular aspect of the friendship relation. It is also 
possible to measure other aspects of  the relationship, such as its duration, the reason for 
its existence, etc.. In sexual networks, what is actually measured is typically the 
frequency of  sexual contact with each partner. In communication networks, researchers 
may record both the frequency and the length of individual communications between 
pairs of actors. 

The differential focus on monadic and dyadic attributes results in traditional social 
science and network analysis having different canonical data sets. In the traditional case, 
the canonical data set is a person-by-attribute matrix in which the persons are seen as 
cases and the monadic attributes are seen as variables. In the network case, the canonical 
data set is a person-by-person matrix, which is conceived of  as recording a single social 
relation (or other dyadic attribute) among a set of  actors. Here, the cases are the (ordered 
or unordered) pairs of  actors, and the entire relation or dyadic attribute is a single 
variable. 

Both data matrices may be described as having two dimensions or ways,  which 
means simply that they have more than one row and more than one column ~. The 
number of  ways in a matrix is just the number of  subscripts needed to identify each 
individual datum, as in xij. The data sets differ in the number of modes,  which are 
distinct sets of  entities pointed to by the subscripts. In the traditional data set, the two 
subscripts refer to two different sets of  entities, persons and attributes. Hence, a 
methodologist  might describe traditional social science as the study of  2-way 2-mode 
matrices. In contrast, in the network data set, both subscripts refer to the same set of 
entities, persons. The same methodologist  might describe network analysis as the study 
of  2-way l -mode  matrices. 

In practice, however, the distinction between traditional social science and network 
analysis is not nearly so neat. One reason is that there are ways of  converting 2-mode 
data sets into l -mode  matrices 2, to which we can then apply the techniques (if  not the 
theories) of  network analysis. Another reason is that some 2-mode data are clearly 
relational in spirit and arise naturally in network research. For  example,  the assignment 
of  faculty to courses may be seen as a relation between the set of faculty and the set of 
courses. Similarly the membership of  individuals in voluntary organizations may be seen 
as a relation between two equally interesting sets. Still another reason is that some data 
can be recorded either as 1-mode or 2-mode, at the convenience of  the researcher. For 
example,  in some universities, faculty are asked to name one or more graduate students 
that they would like as research assistants, while, simultaneously, students are asked to 
name faculty that they would like to work with. If  faculty and graduate students are 
regarded as separate sets of  entities, the data are 2-mode, but if they are seen as a single 
set of entities (persons), the data are 1-mode. 

This paper considers new methods of  visualizing and analysing 2-mode data using 

Typically, l-way matrices are simply called 'arrays'. 
2 For example, we can compute correlations or other measures of similarity among the rows or the columns 

of the 2-mode matrix yielding a 1-mode correlation matrix. 
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network analytic techniques. In particular, we consider the following topics: visual 
representations of 2-mode data, clustering, centrality and structural similarity. Methods 
for dealing with 2-mode data have been suggested by a number of authors. Freeman 
(1980) and Doreian (1980) used Q-Analysis. Seidman (1981) proposed using hyper- 
graphs. The idea we develop is based upon bipartite graphs and was first suggested by 
Wilson (1982). See also Breiger (1974) and McPherson (1982) for relevant discussions 
of 2-mode data. 

2. Two or three views of 2-mode data in network analysis 

Some 2-mode data sets are not seen as particularly relevant to network analysis. For 
example, if we randomly sample 1500 Americans and ask their opinion on a 100 attitude 
questions, we get a person-by-question 2-mode matrix that we do not normally regard as 
a candidate for network analysis. However, we could in fact apply network methods to 
the analysis of these data by deriving a dyadic variable from the data. For example, we 
can compute correlations among all pairs of respondents across all 100 attitudes to get a 
1500-by-1500 person-by-person matrix which records the degree to which each pair of 
persons in the sample has similar attitudes. This 1-mode matrix can then be analyzed 
like any other dyadic attribute. We could then use cohesive subgroup algorithms to find 
groups of respondents with similar attitudes, or use centrality measures to identify 
respondents whose views are more 'middle-of-the-road' and less 'fringy' than others. 

In other cases, 2-mode data sets are collected or constructed explicitly as an 
intermediary step toward the construction of a 1-mode network data set. For example, 
one may record, as Davis et al. (1941) did, the guest lists of a series of social events 
attended by society women. The data are arranged as a woman-by-event matrix X in 
which xij = 1 if the ith woman attended the jth event, and xlj = 0 otherwise. The data 
matrix is shown in Fig. 1. Given matrix X, it is possible to construct the product of 
matrix X and its transpose XX', whose ijth cell gives the number of events that both 

woman I and woman j attended. This value is interpreted as an index of the strength of 
social proximity of the two women. 

iiiii 
1 2 3 4 5 6 7 8 9 0 1 2 3 4  

EIE2E3E4E5E6E7E8E9EIEIEIEIEI 

1 EVEL~ I i i i i i 0 1 1 0 0 0 0 0  
2 ~URA 1 1 1 0 1 1 1 1 0 0 0 0 0 0  
3 ~E~SA 0 1 1 1 1 1 1 1 1 0 0 0 0 0  
4 BRENDA 1 0 1 1 1 1 1 1 0 0 0 0 0 0  
5CHARLOTTE 0 0 1 1 1 0 1 0 0 0 0 0 0 0  
6 FRANCES 0 0 1 0 1 1 0 1 0 0 0 0 0 0  
7 ELEANOR 0 0 0 0 1 1 1 1 0 0 0 0 0 0  
8 PEARL 0 0 0 0 0 1 0 1 1 0 0 0 0 0  
9 RUTH 0 0 0 0 1 0 1 1 1 0 0 0 0 0  

i0 VERNE 0 0 0 0 0 0 1 1 1 0 0 1 0 0  
ii ~ A  0 0 0 0 0 0 0 1 1 1 0 1 0 0  
12~THERINE 0 0 0 0 0 0 0 1 1 1 0 1 1 1  
13 SYLVIA 0 0 0 0 0 0 1 1 1 1 0 1 1 1  
14 NO~ 0 0 0 0 0 1 1 0 1 1 1 1 1 1  
15 HEL~ 0 0 0 0 0 0 1 1 0 1 1 1 1 1  
16 ~ROq~ 0 0 0 0 0 0 0 1 1 1 0 1 0 0  
17 OLIVIA 0 0 0 0 0 0 0 0 1 0 1 0 0 0  
18 FLO~ 0 0 0 0 0 0 0 0 1 0 1 0 0 0  

Fig. 1. Davis, Gardner and Gardner data (DGG). 
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What this index of  social proximity means exactly is not always clear. In some cases 
we would be willing to assume that strong proximity reflects a positive affective tie. In 
other cases, we would recognize that certain pairs of  highly proximate women might not 
like each other at all (e.g., have a competit ive relationship), but are still closely familiar 
with and influenced by each other. In still other cases, we would recognize the 
possibili ty that two women could co-attend a series of  the same (large) events and not 
ever have even met each other, in which case we might regard the large value of  XX'ij 
as an index of  the potential for some kind of  tie to develop between a pair. In all of  these 
cases, XX'  is regarded as representing the valued graph of  a social network which could 
not be measured directly and was instead constructed from an intermediate data set X. 

In still other cases, 2-mode data sets may be collected with the explicit  intention that 
they will remain 2-mode data sets, but the spirit of  the analysis is still relational in 
character. That is, the data consist of  relations between two equally important sets of 
entities. For example,  in a classic assignment problem, we may ask faculty to indicate 
which courses they would like to teach, or ask fraternity members which rooms they 
would like to occupy. The result is a matrix X in which xij  > 0 if person i chooses item 
(e.g., room) j and xi j  = 0 otherwise. Here, what is of  primary interest is which person is 
connected to which room or course, not how the persons are connected via the items, 
nor how the items are connected via the persons. Yet the latter two issues are not 
unimportant, and could still play an important part in the analysis. 

In the first two cases there is no need to develop any new techniques to analyze 
2-mode data, since the data are immediately converted to 1-mode data, for which the full 
range of  network analytic methods are available. In contrast, for the last case, we need 
techniques that can work with the 2-mode data directly, without reducing it to 1-mode 
data first. 

3. Visual representations of 2-mode data 

One technique that is specifically designed for the analysis of relations between two 
modes is correspondence analysis. In simplified terms, correspondence analysis can be 
seen as a method for representing both the rows and columns of  a 2-mode matrix as 
points in a metric space such that distances between the points are meaningful. Applied 
to the Davis, Gardner and Gardner data, a correspondence analysis results in a map in 
which (a) points representing the women are placed close together if the women 
attended mostly the same events, (b) points representing the social events are placed 
near each other if they were attended by mostly the same women, and (c) women-points 
are placed near event-points if those women attended those events 3. A correspondence 
analysis map of  the Davis, Gardner and Gardner data is given in Fig. 2. 

3 Actually, correspondence analysis includes an adjustment for marginal effects with the result that women 
are placed close to events to the extent that (a) those events were attended by few other women, and (b) those 
women attended few other events. 
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Fig. 2. Correspondence analysis of theDavis data, Note: some pointsare obscured by others. 

Three problems should be noted with respect to correspondence analysis representa- 
tions of these kind of  data. First, because the data values in relational data sets have a 
severely limited range (all zeros and ones), they are difficult to fit using a continuous 
distance model of  low dimensionality. This means that 2-dimensional maps will almost 
always be severely inaccurate and misleading. Second, correspondence analysis is 
designed to model frequency data, such as might arise from a Poisson, multinomial or 
product-multinomial sampling process. Yet the data values in the Davis, Gardner and 
Gardner data set are very different - -  they are not frequencies that just happen to have a 
restricted range. They are not, for example, the outcome of  a set of  Bernoulli processes 
with one trial. Rather, they are an arbitrary numerical representation of  a discrete binary 
relation. Therefore, a modeled value of  0.7 (approximating 1.0) for any data cell may be 
meaningless, and the distances on the map difficult to interpret. In fact, there is no way, 
based on the 2-dimensional map, to determine which women attended what events, 
which would seem like an elementary criterion for representation adequacy. Third, the 
distances in correspondence analysis are not Euclidean, yet human users of  the technique 
find it very difficult to comprehend the maps in any other way. 

An alternative approach begins by treating the data as a bipartite graph. A graph is 
bipartite if the vertices may be partitioned in exactly two mutually exclusive sets such 
that there are no ties wholly within either set - -  i.e., the endpoints of  every tie come 
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FLORA 

T H E R E S ~  

PEARL 

MYRNA ~ _ _ _ _ E9 

E8 

KATHERINE . . . . . . .  ~ . . . . . . . . .  El0 

ELEANOR ~ E5 

NORA E12 
C H A R L O ~  E3 

B R E N D A J J ~  E14 

OLIVIA ~ ~ E' 

LAURA 

E V E L Y ~ ~  

Fig. 3. Simple bipartite graph representation of the DGG dataset. 

from different sets 4. The advantage of the bipartite representation is that no data is lost: 
we always know which women attended which events. 

Fig. 3 shows the Davis, Gardner and Gardner data represented as a classic bipartite 
graph. Armed with the knowledge that what is being represented is a mathematical 
graph, we can remind ourselves that the information in the figure is contained solely in 
the pattern of connections, not in the spatial positioning of the nodes or the length of 
lines. However, the picture is so complex that it is difficult for the mind to get a sense 
for the structure of the data. 

A compromise approach is to combine the correspondence analysis and classical 
graph representations so that nodes are positioned spatially according to the coordinates 
from the correspondence analysis, but lines are drawn between women and events to 
show membership linkages. The result of this is shown in Fig. 4. The advantage of this 
approach is that the complexity of the figure is considerably reduced by the non-random 
placement of nodes in the space. 

While more successful than either approach alone, the combination still has faults. 
For one thing, all the flaws of applying correspondence analysis to these kind of data are 
still present. We are tempted to interpret the distances between points, but this would be 
a mistake for the reasons mentioned earlier. Instead, we must interpret the figure as a 
representation of the bipartite graph drawn in such a way as to improve the aesthetic 
quality of the representation and consequently its readability. Yet the figure is clearly 
not optimal with respect to this last criterion. This is to be expected given that 

4 In addition, in this paper, we assume that the graph is connected and undirected. 
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/ \  
11 

E9 

Fig. 4. DGG bipartite graph with points located according to coordinates derived from correspondence 
analysis. 

correspondence analysis was not designed as an algorithm for drawing bipartite (or any 
other) graphs. If the objective is to represent the data in such as way that the mind can 
readily absorb its structure, then there are other methods which are better designed to 
deliver that benefit. 

A more direct approach is as follows. First, compute geodesic distances between all 
pairs of nodes in the bipartite graph (see Fig. 5). Note that the geodesic distances among 
women (and among events) cannot be less than two (nor odd-valued) because women 
are not directly connected to other women (the same goes for events). Second, submit 
this geodesic distance matrix to ordinary multidimensional scaling. Fig. 6 shows the 
results of non-metric scaling, with ties between women and events superimposed. The 
map is quite revealing, making it easy to draw rough conclusions at a glance. For 
example, we can readily see that there are two groups of women and corresponding 
events. Even more interesting, however, is that we can see that there are some central 
women and events that are connected to both groups and serve to bring these groups 
together. 

Davis, Gardner and Gardner also give a description of the social structure of the 
women. They identify two groups and within each group they have levels of participa- 
tion. The first group consists of the women labelled 1 to 8 in Fig. 1. They identify a core 
within this consisting of the first four women, namely, Evelyn, Laura, Theresa and 
Brenda. The second group consists of the women 10 to 18; the core of this group is 
Sylvia, Nora and Helen. They place Ruth in both groups but at the lowest level. The 
map is in close agreement with this analysis. 

A still more direct approach is to define what figure qualities contribute to aesthetic 
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RUTH BRENDA 

PEARL ~ 1 ~  S]~E1 

MYRNA 

Ell ~ OUVIA 

Fig. 7. MINLEN drawing of DGG bipartite graph. 

criteria for readability are a minimum number of crossed lines, the preservation of some 
space around each node (that is, preventing nodes from being placed right on top of each 
other), and the placement of nodes near each other that are adjacent (directly connected 
by a tie). We have written a PASCAL program called MINCROSS based on a standard 
(Fletcher-Powell) function minimization algorithm (Press et al., 1989). The procedure 
tries to minimize a cost function containing terms for the number of crossed lines 
(Davidson and Harel, 1989), the spatial proximity of vertices, and the sum of Euclidean 
lengths of all lines. Unfortunately, calculating the number of crossed lines is expensive, 
and the MINCROSS algorithm is unacceptably slow for graphs of more than 20 points. 
However, we have found that if we eliminate the term for the number of crossed lines, 
the routine runs quite rapidly and the picture quality deteriorates only marginally. This is 
because minimizing the sum of lengths of all lines tends to reduce the number of crossed 
lines anyway, and particularly reduces the number of crossed long lines, which are the 
most visually disturbing. We call this new routine MINLEN 5. 

Applied to the bipartite Davis, Gardner and Gardner data, MINLEN yielded the map 
in Fig. 7. The results are very similar to those of the MDS map in Fig. 6, but the groups 
are more clearly distinguished. 

Both the MINCROSS and MINLEN programs accept a set of starting coordinates for 
each node as input. By starting the programs with nearly optimal initial coordinates, the 
user can greatly reduce the processing time. This feature enables the programs to be 
used to improve the visual output from correspondence analysis or MDS. 

5 MINLEN and other programs discussed in this paper are available via the INTERNET from the worldwide 
web site presently located at http:/ /www.analytictech.com/download.htm. 
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Fig. 8. Circles represent faculty, squares are courses. Arrows indicate which faculty chose which courses. 

Fig. 9. Film data courtesy of Candace Jones, Boston College. Squares are project team members, ellipses are 
film projects. 
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An application of  this methodology to data that is not normally thought of  as network 
data is provided by the familiar situation in which an academic department asks its 
members which courses they would like to teach. Often, the results of  such a question- 
naire are presented as a list of  courses with the names of  persons choosing that course 
alongside, or as a list of persons followed by the courses they have selected. Such 
representations can be difficult to grasp overall, and require choosing a dominant mode 
of interest. In contrast, representing the data as a graph makes it easier to see global 
patterns, and permits the focus to be on persons, courses or relations between the two 
(see Fig. 8). For example, consider the structural similarity evident in the choices by TB 
and BJ on the far right of  the graph. They compete for one course, and both choose three 
other courses which no others compete for. 

Another example is provided by data drawn from film credits (Jones et al., 1996). 
Films are made by project teams that are assembled for just that one film, and then are 
dissolved when the film is finished. The members then go on to form part of  other film 
teams. A partial graph of films made in 1977-1979 is shown in Fig. 9. 

4. Density 

One of  the most basic attributes of  a social network is its density - -  essentially a 
count of  the number of ties present. To improve the interpretability of  this value, it is 
standard practice to compute a normalized value by dividing the raw count by the 
maximum possible in a graph of the same size. A directed graph without self-loops has 
at most n ( n  - l )  possible edges and an undirected graph has half this value. These are 
the standard denominators used to divide into the number of  observed ties. For the 
Davis, Gardner and Gardner data set (which is undirected) the standard density measure 
gives a value of 0.18, which would normally suggest a fairly sparse network. 

However, the standard denominators are clearly not appropriate for our 2-mode data, 
since no ties are possible within vertex sets. The maximum number of  ties possible 
occurs when every vertex in one set is connected to every vertex in the other. If  the 
vertex sets are of size n i and n o then this amounts to n i n  o edges in the undirected case 
and 2n i n o in the directed case (again assuming self-loops are not allowed). Using this 
denominator, the Davis, Gardner and Gardner dataset has density 0.37, which is twice as 
high as previously calculated. 

5. Centrality 

Previous attempts (Bonacich, 1991) to measure centrality in 2-mode data sets have 
concentrated on methods that can be applied to the 2-mode matrix representation of  the 
data. However, by representing a 2-mode data set as a bipartite graph instead, it is clear 
that we can mechanically if not sensibly utilize any standard measure of  centrality. The 
main question is whether any shifts in interpretation are necessitated by the unusual 
nature of  the data. In this section, we consider applying four standard measures of 
centrality, including degree, closeness, betweenness and eigenvector centrality. 
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5.1. D e g r e e  

The degree centrality of a node is defined as the number of edges incident upon that 
node. Applied to the Davis, Gardner and Gardner data, this means that the degree of a 
woman is the number of events she attended, and the degree of an event is the number 
of women who attended it. Thus, degree has a clear and simple interpretation in the 
2-mode case. 

It should be noted, however, that the normalization of degree recommended by 
Freeman (1979) and computed by programs like UC1NET (Borgatti et al., 1990) is not 
necessarily the most appropriate for the 2-mode case. Freeman recommends dividing by 
the number of nodes in the network minus one, which is the theoretical maximum in an 
ordinary graph. In the case of a bipartite graph, however, the maximum degree of a node 
is given by the number of nodes in the opposing set. Hence, the maximum degree for a 
woman in the Davis, Gardner and Gardner data is the total number of events, and the 
maximum degree for an event is the total number of women. The only way that a node 
in a bipartite graph can achieve maximum degree in Freeman's terms is the case where 
one vertex set contains just one node and the other set contains all other nodes. 

Consequently, if we regard the number of nodes in each vertex set as fixed, then we 
might prefer an alternative normalization in which we divide each score by the size of 
the opposite vertex set (i.e., the vertex set to which a given node does NOT belong). 
However, this means that the normalized scores would not be a linear transformation of 
the raw scores, unlike the Freeman normalization. 

This is not necessarily a disadvantage, however, since we are after all considering 
different entities. While we expect a duality between the centrality scores across the 
modes it is not surprising that special adjustments are needed to make the centralities of, 
say, actors and events directly comparable. 

Raw, normalized and 2-mode normalized degree measures for the Davis, Gardner and 
Gardner data set are given in the first three columns of Table 1. Note that the nonlinear 
normalization has changed the rank order of the centralities. For example event 14 and 
Dorothy both have the same degree and normalized degree value, but the 2-mode 
normalization gives a higher centrality score to Dorothy reflecting the fact there are 
fewer events than women. Note that here, and elsewhere in this paper, we shall express 
all normalized scores as a percentage. 

5.2. C loseness  

The closeness centrality of a node was defined by Freeman (1979) and is inversely 
proportional to the total geodesic distance from the node to all other nodes in the 
network. Geodesic distance is defined as the length (number of edges) of the shortest 
path linking two nodes. In a bipartite graph, all paths consist of an alternating series of 
nodes and edges of the form u - v - u * - v  * where the u's represent nodes from one 
vertex set, the dashes represent edges, and the v's represent nodes from the other vertex 
set. The minimum distance of a node to another node in the same vertex set is 2. 

As with degree centrality, the normalization of closeness proposed by Freeman is not 
appropriate for the 2-mode case, if one regards the size of the vertex sets as fixed. In 
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Table 1 
Degree and closeness centrality 

255 

1 2 3 4 5 6 
Deg NDeg 2mNDeg Farness Close 2mClose 

1 EVELYN 8.00 25.81 57.14 60.00 51.67 80.00 
2 LAURA 7.00 22.58 50.00 66.00 46.97 72.73 
3 THERESA 8.00 25.81 57.14 60.00 51.67 80.00 
4 BRENDA 7.00 22.58 50.00 66.00 46.97 72.73 
5 CHARLOTTE 4.00 12.90 28.57 80.00 38.75 60.00 
6 FRANCES 4.00 12.90 28.57 72.00 43.06 66.67 
7 ELEANOR 4.00 12.90 28.57 72.00 43.06 66.67 
8 PEARL 3.00 9.68 21.43 72.00 43.06 66.67 
9 RUTH 4.00 12.90 28.57 68.00 45.59 70.59 
10 VERNE 4.00 12.90 28.57 68.00 45.59 70.59 
11 MYRNA 4.00 12.90 28.57 70.00 44.29 68.57 
12 KATHERINE 6.00 19.35 42.86 66.00 46.57 72.73 
13 SYLVIA 7.00 22.58 50.00 62.00 50.00 77.42 
14 NORA 8.00 25.81 57.14 60.00 51.67 80.00 
15 HELEN 7.00 22.58 50.00 62.00 50.00 77.42 
16 DOROTHY 4.00 12.90 28.57 70.00 44.29 68.57 
17 OLIVIA 2.00 6.45 14.29 82.00 37.80 58.54 
18 FLORA 2.00 6.45 14.29 82.00 37.80 58.54 
19 El 3.00 9.68 16.67 84.00 36.90 52.38 
20 E2 3.00 9.68 16.67 84.00 36.90 52.38 
21 E3 6.00 19.38 33.33 78.00 39.74 56.41 
22 E4 4.00 12.90 22.22 82.00 37.80 53.66 
23 E5 8.00 25.81 44.44 74.00 41.89 59.46 
24 E6 8.00 25.81 44.44 64.00 48.44 68.75 
25 E7 10.00 32.26 55.56 60.00 51.67 73.33 
26 E8 14.00 45.16 77.78 52.00 59.62 84.62 
27 E9 12.00 38.71 66.67 56.00 55.36 78.57 
28 El0 6.00 19.35 33.33 78.00 39.74 56.42 
29 E11 4.00 12.90 22.22 82.00 37.80 53.66 
30 El2 7.00 22.58 38.89 76.00 40.79 57.89 
31 El3 4.00 12.90 22.22 82.00 37.80 53.66 
32 El4 4.00 12.90 22.22 82.00 37.00 53.66 

F r e e m a n ' s  no rma l i za t ion ,  the  total  d i s t ance  score  is d iv ided  in to  the  quan t i ty  n -  1, 

w h i c h  rep resen t s  the  m i n i m u m  score  poss ib le  for  a n o d e  in an  o rd ina ry  graph.  Th i s  is 

b e c a u s e  it is pos s ib l e  for  a n o d e  to b e  d i rec t ly  c o n n e c t e d  to all n - 1 others ,  p l ac ing  it a 

d i s t ance  o f  1 f r o m  each  o f  these.  S u m m i n g  all o f  these  un i ta ry  d i s t ances  we get  a total  

score  o f  n -  1. The  b e a u t y  o f  th is  n o r m a l i z a t i o n  is tha t  it c an  be  in te rp re ted  as the  

rec ip roca l  o f  the  ave rage  d i s tance  to all o the r  nodes .  

H o w e v e r ,  in  the  b ipar t i t e  case,  it is no t  poss ib le  for  any  n o d e  to be  a d i s t ance  o f  1 

f r o m  all o the r  nodes .  Ins tead ,  a node  m a y  be  d i s t ance  1 f r o m  all nodes  in the  oppos i te  

ve r t ex  set, and  d i s t ance  2 f r o m  all nodes  in its o w n  ver tex  set. (Ac tua l ly ,  for  our  

c o n n e c t e d  b ipar t i t e  graphs ,  any  n o d e  w h i c h  is at  a d i s t ance  1 f r o m  all nodes  in the  

oppos i t e  ve r t ex  set m u s t  be  a d i s t ance  o f  2 f r o m  all the  n o d e s  in i ts o w n  ve r t ex  set.)  
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Therefore, the theoretical minimum raw score for a node is n i q-- 2 n  o - 2 where n o is 
the size of  the node's  own vertex set and n i is the size of  the other vertex set. This 
formula, therefore, generates two different values for any bipartite graph with unequal 
vertex sets. Hence, if we regard the size of  each vertex set as fixed, we should normalize 
closeness by dividing the raw score into one of  these quantities, as appropriate. Hence, 
as in the degree case, we again obtain a nonlinear normalization. 

Raw, normalized and 2-mode normalized closeness measures for the Davis, Gardner 
and Gardner data set are given in the last three columns of  Table 1. The nonlinear 
normalization has had an even more dramatic effect on the closeness centrality. In all the 
degree and closeness centrality measures, except 2-mode normalized closeness, the 
second-most central node after E8 has been E9. However, in the 2-mode normalized 
closeness, the second-highest value of 80 is given to three women. 

5 .3 .  B e t w e e n n e s s  

Betweenness may be roughly defined as the number of  geodesic paths that pass 
through a given node, weighted inversely by the total number of  equivalent paths 
between the same two nodes, including those that do not pass through the given node. In 
a bipartite graph, paths can originate and terminate at a node from either vertex set. In 
the case of the Davis, Gardner and Gardner data, this means that the betweenness of a 
woman (or an event) is a function of paths from women to women, from women to 
events (or vice versa), and from events to events. 

In a bipartite graph, the only way that a node can achieve the theoretical maximum 
given by Freeman is if it is the only member of  its vertex set. If  we consider the size of  
each vertex set to be fixed, then it can be proved that the maximum is given by 

2 ( n o - 1 ) ( n i - 1  ) n o > n  i 

1 1 
- ~ n i ( n i - l ) + - ~ ( n o - 1 ) ( n o - Z ) + ( n o - l l ( n i - I  ) n o < n  i 

where n o is the size of  the node 's  own vertex set and n i is the size of  the other vertex 
set. (A proof of this and some of  the other more mathematically involved results will be 
the subject of  a separate paper.) The graph which gives these values consists of  a node 
connected to all nodes in the opposite set, the remaining nodes are then connected 
pairwise so as to avoid concentrating ties on a single opposing node (see Fig. 7). This 
again produces a nonlinear normalization. As can readily be seen, the maximum 
centrality is a descending function of  the relative size of a node's  own vertex set. When 
n o = l, the equation (case n o < n i) reduces to Freeman's absolute maximum, which is 

n 2 - 3 n + 2  

2 

where n = n i - t-  n o .  

Unlike closeness, betweenness can be said to have a built-in sense of  exclusivity or 
competitiveness, such that a node is only central to the extent that it is the only node in 
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its vertex set. Furthermore, if the vertex set contains two or more nodes, adding any ties 
beyond the minimum required to ensure connectedness can only reduce the centrality of 
the most central node. 

5 . 4 .  E i g e n v e c t o r  c e n t r a l i t y  

Eigenvector centrality (Bonacich, 1972) is defined as the principal eigenvector of the 
adjacency matrix of a graph. It may be thought of  as a weighted degree measure in 
which the centrality of  a node is proportional to the sum of centralities of the nodes it is 
adjacent to. In the Davis, Gardner and Gardner case, this means that a woman's  
centrality is determined by the sum of the centralities of the events she attended, and, 
simultaneously, an event 's centrality is determined by the sum of centralities of the 
women who attended it. This interpretation is identical (and the scores are proportional) 
to that of the first factor resulting from a singular value decomposition (SVD) of  the raw 
2-mode incidence matrix, which is the approach taken by Bonacich (1991). As he points 
out, this approach is also equivalent to computing eigenvectors of XX'  and X' X, where 
X is again the raw 2-mode incidence matrix. Thus, all three approaches yield the same 
scores and two of  them have the same interpretations. 

Bonacich (1972) does not provide a normalization of eigenvector centrality. How- 
ever, in the UCINET program (Borgatti et al., 1990), eigenvector centrality is normal- 
ized by dividing each raw eigenvector score 6 by the square root of  one ha l l  which is 
the maximum score attainable in any graph. Since it appears that the maximum occurs 
only in the center of  a star graph, we can derive this maximum as a special case of the 
general principle that for any c o m p l e t e  bipartite graph, the eigenvector score for any 
node is equal to 

2 n  o 

where n o is the size of  the vertex set the node belongs to. In the star graph, n o = 1. This 
equation also gives the minimum score by substituting n i = n -  n o for n o in the 
equation. 

For our purposes we require the maximum value obtainable among all connected 
bipartite graphs in which the vertex sets have fixed sizes. This is precisely the same 
problem as for the betweenness case. It is interesting to note that eigenvector centrality 
resembles betweenness in that reducing the size of  a node's vertex set generally 
improves its centrality score, and never worsens it, all else being equal. In fact, we 
conjecture that the relationship between the two concepts is closer than this and that the 
maximum eigenvector score occurs on precisely the same graphs that maximize the 
betweenness scores. We have performed a number of trials and this does seem to be the 
case. It is unlikely that a proof for this can easily be found. In fact, even for the l-mode 
case there is no published proof that the star maximizes the denominator in the 

6 This terminology is unfortunate as the 'raw eigenvectors' in this paper correspond to what in the 
mathematical literature would be called 'normalized eigenvectors' since their Euclidean norm is unity. 
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Table 2 
Betweenness and eigenvector centrality 

1 2 3 4 5 6 
Bet NBet 2rnNBet Eig NEig 2mNEig 

1 EVELYN 42.76 9.20 9.67 0.22 31.27 32.71 
2 LAURA 22.86 4.92 5.17 0.20 28.81 30.14 
3 THERESA 38.74 8.33 8.76 0.25 34.84 36.44 
4 BRENDA 22.01 4.73 4.98 0.21 29.15 30.49 
5 CHARLOTrE 4.73 1.02 1.07 0.11 15.48 16.19 
6 FRANCES 4.75 1.02 1.08 0.14 19.45 20.39 
7 ELEANOR 4.14 0.89 0.94 0.15 21.54 22.53 
8 PEARL 2.98 0.64 0.67 0.12 17.35 18.15 
9 RUTH 7.36 1.58 1.67 0.16 22.65 23.69 
10 VERNE 6.37 1.37 1.44 0.15 21.91 22.91 
11 MYRNA 5.94 1.28 1.34 0.14 19.55 20.45 
12 KATHERINE 16.29 3.50 3.69 0.17 24.09 25.20 
13 SYLVIA 25.30 5.44 5.72 0.21 29.55 30.91 
14 NORA 43.94 9.45 9.94 0.20 28.13 29.42 
15 HELEN 30.73 6.61 6.95 0.18 25.41 26.58 
16 DOROTHY 5.94 1.28 1.34 0.14 19.55 20.45 
17 OLMA 2.09 0.45 0.47 0.05 7.00 7.33 
18 FLORA 2.09 0.45 0.47 0.05 7.00 7.35 
19 E1 0.97 0.21 0.22 0.09 12.99 13.25 
20 E2 0.94 0.20 0.21 0.10 13.82 14.10 
21 E3 8.20 1.76 1.81 0.16 23.15 23.62 
22 E4 3.45 0.74 0.76 0.11 16.12 16.45 
23 E5 16.98 3.65 3.76 0.21 29.58 30.18 
24 E6 28.01 6.02 6.20 0.22 30.65 31.27 
25 E7 58.10 12.49 12.85 0.27 37.48 38.24 
26 E8 108.26 23.28 23.95 0.36 50.24 51.26 
27 E9 96.23 20.69 21.29 0.27 38.27 39.05 
28 El0 6.82 1.47 1.51 0.15 21.30 21.73 
29 E11 9.02 1.94 2.00 0.07 9.83 10.03 
30 El2 10.24 2.20 2.26 0.17 24.48 24.98 
31 El3 1.89 0.41 0.42 0.11 15.60 15.92 
32 El4 1.89 0.41 0.42 0.11 15.60 15.92 

central izat ion fo rmula  7. U n d e r  the assumpt ion  that  the conjec ture  is correct ,  we  can 

p roceed  wi th  normal iza t ion.  However ,  we  have  not  been  able to der ive  a c losed  fo rmula  

and mus t  resort  to numer ica l  calculat ions.  Essent ia l ly ,  we  f ind the graph that  max imizes  

b e t w e e n n e s s  centra l iza t ion and then compu te  e igenvec tors  to obtain the needed  denomi -  

nator. 

Raw,  normal i zed  and 2 -mode  normal i zed  e igenvec to r  and b e t w e e n n e s s  central i ty 

scores  for  the Davis ,  Gardner  and Gardner  data set  are g iven  in Table 2. W e  note  that  in 

this table the central i ty o f  E8 and E9 is not  a factor  o f  the size o f  the groups  but  is a real 

p h e n o m e n o n .  This is demons t r a t ed  by the fact  that  they still domina te  af ter  2 -mo d e  

7 The authors have a partial proof for this case but it still needs additional work. 
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normalization has been applied. If  we look across all the tables and try and identify a 
group of  most central women we see that Evelyn, Laura, Theresa, Brenda, Sylvia, Nora 
and Helen are the most central. These women are precisely those which Davis, Gardner 
and Gardner identified as core members of  the two groups. 

6. Centralization 

In 1-mode data, an important concept is graph centralization. This measures the 
extent to which a particular network has a highly central actor around which highly 
peripheral actors collect. In all the examples of  centrality mentioned above this is 
equivalent to providing a formal measure of  the extent to which the network resembles a 
star. The general principle under which all centralization measures are now computed 
was proposed by Freeman (1979). In his formulation, to compute centralization we 
begin by summing the differences between the most central vertex and all other vertices. 
Then we normalize by dividing by the maximum possible, which is the value attained by 
a star graph. This is summarized by the formula 

] ~ [ C ( p * )  -- C( pi) ] 

C~ = m a x ] ~ [ C ( p * )  - C( Pi)] 

where C~ is the centralization of  the network G, C is any centrality measure, and the 
maximum is taken over all possible graphs of the same size. 

With 2-mode data represented as a bipartite graph we could simply apply the 
centralization methods directly. But we again come across a problem of interpretation 
since we assume the two modes are fixed in size. If  we could find the bipartite 
connected graphs with specified vertex sizes which give the maximum for the centraliza- 
tion formula then we could use these as the basis for our normalization. We therefore 
replace the denominator with a new maximum which is taken over all connected 
bipartite graphs of  specified vertex sizes. It seems reasonable to suspect that these are 
the same graphs which give us the normalization for the centrality measures. This is 
indeed the case. 

For degree centralization the denominator required in the centralization formula is 

( n  i +/ ' /o) H i -  2 (n  i + n o -- 1) 

It is interesting to note that this is independent of  the distribution of  edges required to 
make the graph connected. That is, the maximum is achieved by any tree that has Kl,n~ 
as a subgraph. This is because the degree centrality measure is local: it is concerned only 
with the degree of  the most central vertex which must be as high as possible and then 
we must apply the connectivity constraint. The distribution of  degrees in the opposite 
vertex set is irrelevant. This local nature is not apparent in the non-bipartite case as there 
is only one connected graph which satisfies these constraints. 

The formula above assumes that we have not normalized our degree centrality scores 
by the method suggested in the previous section. In the normal (non-bipartite) case this 
is not an issue since the normalization formula is a linear transformation (division by a 
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constant). This means that the normalization divisor cancels out (this is not the case for 
closeness) and it does not matter whether you apply the formula to the normalized or 
un-normalized scores. However,  in the bipartite case the normalization is not linear and 
this will in turn affect the centralization score. Clearly if  we decide that the nonlinear 
normalization makes sense then we should base our centralization formula on it. In that 
case, we obtain the following denominator using the same notation: 

n o - 1 n i + n o - -  l 

( n  o + n i - 1) 
n i n o 

For our 2-mode data, each of  these formulae can potentially provide us with two 
measures of  centralization. We could measure to what extent the actors and events are 
centralized around a particular actor and to what extent actors and events are centered 
around a particular event. To obtain these measures we simply have to compute the 
numerator around the most central actor in each group. Note that it is possible for one of  
these values to be negative and this could provide difficulties in interpretation. Clearly 
we can avoid this problem if  we just  base our centralization on the most central actor or 
event in the graph as a whole and just  have one measure of  centralization. 

Another approach to centralization in bipartite graphs is to develop what we shall call 
single mode centralizations. A single mode centralization measures the extent to which 
nodes in one vertex are central relative only to other nodes in the same vertex set. The 
nodes in the other vertex set are not ignored, however, as they are included in the 
computation of  each node ' s  centrality score. It is quite possible for there to be two very 
different structures internal to each mode of  the dataset. It could happen that in one 
mode there are a lot of  actors with a similar centrality score whereas in the other mode 
there may be a highly central event with very peripheral other events. We therefore have 
a network in which there is no centralization among the actors but a high degree of  
centralization among the events. The centralization of  the whole network will give an 
artificial measure which would be an average of  the two extremes. Since these are 
actually different modes,  it would seem sensible to obtain values for each mode 
separately. 

The single mode centralizations represent a significant advance over the traditional 
procedure of  converting the 2-mode data to 1-mode data, then computing centrality and 
centralization. One reason is that most centrality measures, such as closeness and 
betweenness, are defined only for binary data, so after converting to 1-mode co-occur- 
rence frequencies, the data must be dichotomized before computing centralization, 
which destroys information that is not lost in the single mode centralization approach. 
Another reason is that even without dichotomization, the conversion to 1-mode data 
destroys information about the pattern of  overlaps. For  example,  if  Evelyn and Laura 
shared 6 events, and Laura and Charlotte shared 3 events, and Charlotte and Evelyn 
shared 3 events, there is no way to know if the events that Charlotte and Evelyn shared 
are the same ones that Charlotte and Laura shared, even though we know that Evelyn 
and Laura shared many events. By calculating the centrality scores on the original 
2-mode data and then restricting our attention to a single mode, we avoid losing that 
information. 

For  degree centrality we obtain the following denominator for the single mode 
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centralization formula, we note that the sum in the numerator is now taken over just  one 
of  the modes and the centrality scores for the nodes in the other mode are ignored. 

( h i -  1 ) ( n o -  0 

Note that we do not have to worry about whether the centralities have been 
normalized, since with only one mode, we again have a linear normalization. We 
therefore give only the un-normalized formula. This formula requires more than one 
vertex in the mode we are computing our centralization on; therefore we cannot discuss 
centralization of  a single vertex. 

We can apply these general ideas to provide centralization and single mode central- 
ization formulae for closeness and betweenness. Note that since closeness is a normal- 
ized measure there is no unnormalized version. (It would be possible to have a famess 
centralization but as this is not used in the non-bipartite case it is not presented here 
either.) Formulae for the denominators for closeness and betweenness centralization are 
given below. 

Closeness centralization denominator: 

n i + n o - -  2 2 n i - 1 

2 ( n i -  1) 3 n i + 4 n o _  8 + 2 ( n ° - n i )  5 n i + 2 n o - -  6 

n o - 2 n i - -  1 

+ 2 ( n  i - 1) 2 n i + 3 n o _ 6  + 2  n o > n  i n o + 4n i -- 4 

n i + n o --  4 n o --  2 

2 ( n  o - 1 )  3 n i + ~ n 2 - -  8 + 2 ( n  o - 1 ) 2 n i + 3 n o _ 6  

n i - -  n o + 1 

+ 2 ( n  o - 1) n o _<n i 
2n  i + 3n o - 4 

Closeness single mode denominator: 

( n i - -  1 ) ( n o - -  2 ) ( ni - - 1 ) (  no --  n i )  
+ n o > n i 

n o + n i - -  2 2 n  o - 3 

( n o - 2 ) ( n  o -  1) 
n o ~-~ n i 

2n o - 3 

It is interesting to note that the single mode closeness denominator for n o less than n i 
is independent of  n i. This shows that once n gets to a certain size it has no effect on the 
centralization of  the vertices in the other set. 

Betweenness centralization denominator (un-normalized): 

2 ( n  o -- 1 ) ( n  i -- 1 ) ( n  o + n i -- 1) -- ( n  i - -  1 ) ( n  o + n i - 2) 

1 
2 ( n o - - n i ) ( n o + 3 n i - 3 )  n o ~ * n  i 

- ~ n i ( n  i - -  1) + -~ (n  o -- 1 ) ( n  o - - 2 )  + ( n  o -- 1 ) ( n  i - - 2 )  

( no + ni - -  l ) + ( no - - 1 )  no<--n i 



262 S.P. Borgatti, M. G. Everett/Social Networks 19 (1997) 243-269 

Table 3 

Centralization of DGG Data 

2-Mode Degree Centralization 

Raw Normalized Single Mode 

Actor 18.13 23.07 23.08 

Event 50.97 46.61 46.61 

Network Degree Centralization = 28.17 

2-Mode Closeness Centralization 

Normalized Single Mode  

Actor 28.43 21.35 

Event 44.20  52.86 

Network Closeness Centralization = 31.89 

2-Mode Betweenness Centralization 

Raw Normalized Single Mode 

Actor 5.80 5.86 6.68 

Event 20.73 20 .70  19.82 

Network Betweenness Centralization = 19.59 

Betweenness  normal ized centralization denominator: 

( n o + n  i --  1) 

1 
( n  i -- 1 ) ( n  o + n i -- 2)  + - ~ ( n  o -- F/ i ) (n o -[- 3n i -- 3)  

- 1 1 n ° > n i  

- ~ ( n o ( n  o - 1) + ~ ( n  i - 1 ) ( n  i - 2) + ( n  o - 1 ) ( n  i - -  1) 

( n  o - 1 ) ( n  o + n i - -  2)  
( n  o + n i - 1) - n o ~ n i 

2 ( n  o -  1 ) ( n  i -  1) 

Betweenness  centralization s ingle  mode (un-normal ized version): 

2 ( n o - -  1 ) 2 ( n i - -  1) n o > n  i [1 , ] 
( n o - - 1 )  - ~ n i ( n i - - 1 ) + - ~ ( n o - - 1 ) ( n o - - 2 ) + ( n o - - 1 ) ( n i - - 1  ) no<--n i 

Table 3 g ives  the various centralization scores for the Davis ,  Gardner and Gardner 
data. W h e n  we  s imply  use the raw scores in the formula we  obtain a bias against the 
larger data set, in this case the women.  The normal ized version a lways  increases the 
actor centralization and decreases the event  centralization. Since,  in all the measures o f  
centrality, events  have the highest  value,  it makes  the most  sense to consider the 
normalized event  centralization measure as the overall  measure of  centralization. Clearly 
this value must  be higher than the network centralization reported in the table (the 
network centralization is s imply  the c o m m o n  centralization of  the bipartite graph). It is 
interesting to note that it is s ignif icantly higher for degree and c loseness  but only  
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marginally higher for betweenness. The reason for this is that the graph which 
maximizes the betweenness centrality score is very highly centralized itself, with a 
betweenness centralization of 94.5%. We also note the different consequences of the 
single mode centralization. For the degree case the results are similar to the normalized 
2-mode; for closeness, actor centralization increased and event decreased, whereas the 
reverse occurs for the betweenness case. The reason for this is the greater dominance of 
the events over the actors in the betweenness centrality and this effect is ameliorated 
when single mode centralization is used. Overall, the picture is one in which there is a 
reasonable amount of centralization among the events and very little centralization 
among the actors. Clearly the greatest potential of these techniques (like their 1-mode 
counterparts) is to compare networks with each other. 

We have not presented the results for eigenvector centralization but clearly the same 
methods could be applied; again we would need to perform all the computations 
numerically as we do not have formulae for the denominators. 

7. Subgroups 

One obvious feature of the centrality scores presented above is the disparity between 
the betweenness scores of events E8 and E9 and their scores on all the other centrality 
measures. This occurrence is characteristic of situations in which the nodes of a graph 
fall into two or more groups with some nodes acting as links between the groups. 
Indeed, glancing at the map in Fig. 7, it does appear that there is a left and a fight group 
of nodes which are joined by E8 and E9. Note that these two groups do not correspond 
to women and events. Rather, each group consists of a set of women together with a set 
of events that they attended. 

The obvious next step is to try to identify these subgroups using one of the standard 
approaches in the social networks toolkit. For example, we can search for cliques (Luce 
and Perry, 1949), n-cliques (Luce, 1950; Alba, 1973), n-clans, n-clubs (Mokken, 1979), 
k-plexes (Seidman and Foster, 1978), lambda sets (Borgatti et al., 1990) and Is-sets 
(Seidman, 1983). Unfortunately, these methods are not well suited for analysing a 
bipartite graph. In fact, bipartite graphs contain no cliques, as strictly defined by Luce 
and Perry. In contrast, bipartite graphs contain too many 2-cliques and 2-clans. The 
Davis, Gardner and Gardner graph contains 70 2-cliques, 65 2-clans, and 438 k-plexes 
(k = 2). 

One of the problems is that, in the bipartite graph, all nodes of the same type are 
necessarily two links distant. While nodes of different types may be adjacent (e.g., a 
woman and an event she attended), thereby forming the kernel of a subgroup, but it is 
difficult to add a third node to the group because no matter what it is it can only be 
adjacent to one of the previous members: if it is an event it can only be adjacent to the 
woman, and if it is a woman it can only be adjacent to the event. Another problem is the 
existence of strong bridging nodes, like events E9 and E8. A meta analysis of the k-plex 
analysis, in which we count (for each pair of nodes) the number of k-plexes they both 
are members of, suggests a core/periphery structure in which the bridging nodes are at 
the core, and the nodes adjacent to them are in the semiperiphery, and so on. 

Clearly we need to consider special types of subgraphs which are more appropriate 



264 S.P. Borgatti, M. G. Everett~Social Networks 19 (1997) 243-269 

Fig. 10. Dark nodes form a biclique. 

for 2-mode data. As with our centrality scores we do not expect comparisons between 
the 2 modes but a duality. To achieve this we need to take account of features such as 
the relative sizes of the two vertex sets. A maximally dense subgraph of a bipartite graph 
would simply be a complete bipartite graph. We define a biclique as a maximal 
complete bipartite subgraph of a given bipartite graph (see Fig. 10). For cliques we 
normally only consider cliques greater than size 2 and it would seem reasonable to adopt 
the same criteria for our 2-mode data. However, in this case, as each of the modes 
should form dual cohesive structures then it would seem reasonable to insist that we 
only consider bicliques of the form Km, n where m and n are greater than or equal to 3. 
Of course in analysing real data we may wish to increase or decrease these values 
depending on our data. Of the 70 2-cliques found in the Davis, Gardner and Gardner 
data only 24 are bicliques with minimum size (3,3) and only 4 have minimum size (4,4). 
We can use these bicliques to reveal some of the structure in the data which was 
beginning to be revealed by the visualization methods. 

As already mentioned, one commonly employed technique for analysing cliques is to 
look at clusters of the clique overlap matrix. This operation is performed automatically 
on all cohesive subgroup methods contained within UCINET (Borgatti et al., 1990). We 
can perform exactly the same technique for bicliques. Fig. 11 contains this analysis of 
the biclique structure for the (3,3) bicliques. An examination of the hierarchical 
clustering of the (3,3) bicliques reveals two basic groups together with some outsiders. 
In the first group we have: Charlotte, Ruth, Frances, Eleanor, Evelyn, Laura, Brenda and 
Theresa together with events 4, 7, 3, 6, 5 and 8. The second group consists of Verne, 
Myrna, Dorothy, Helen, Nora, Katherine and Sylvia together with events 9, 10, 12, 13 
and 14. This leaves us with Olivia, Flora and Pearl together with events 11, 2 and 1 as 
outsiders. These groupings have a remarkable amount of agreement with the plot shown 
in Fig. 7. We see for example the two major groups identified and the outsiders do all 
appear at the edge of the diagram. This is also in close agreement with the description 
given by Davis, Gardner and Gardner and the lattice analysis performed by Freeman and 
White (1993). If we now look at the (4,4) bicliques in Fig. 12 we see that we again have 
a similar structure but with a few important differences. We see that Ruth has been 
placed in a variety of cliques and this suggests she is a waverer between the two groups. 
Davis, Gardner and Gardner assigned Ruth to both major groups. The prevalence of 
event 8 throughout all the bicliques suggests that this event occupies a very central 
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A FE T D T 

0 R RL E BH 0 HS 

LF P L AE VL RE V M R H  EY 
IL E O R N A  EA ER E Y O E N  RL 

V O e A  T U C N  LU NE R R T L O  e I V e e e  
I R I R e e T e T E O e e Y R e D S e e N N H E R e l N I I I I  

A A I L 2 1 E 4 H S R 7 3 N A 6 A A 5 8 E A Y N A 9 0 E A 2 3 4  

112 21 2 22 2 2 2 1 1 1 1 1 2 2 1 1 3 3 3  

Level 7 8 9 8 0 9 5 2 9 6 7 5 1 1 2 4 4 3 3 6 0 1 6 5 4 7 8 2 3 0 1 2  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

ii.0000 . . . . . . . . . . . . . . . . .  XXX . . . . . . . . . . . . .  

i0.0000 . . . . . . . . . . . . . . . . .  XXX . . . . . . . . .  XXX 

9.6667 . . . . . . . . . . . . . . . .  XXXXX . . . . . . . . .  XXX 

8 . 7 5 0 0  . . . . . . . . . . . . . . . .  X X X X X X X  . . . . . . . .  X X X  

7.4643 . . . . . . . . . . . . . . .  X X X X X X X X X  . . . . . . . .  X X X  

7 . 0 1 1 9  . . . . . . . . . . . . . .  X X X X X X X X X X X  . . . . . . . .  X X X  

7.0000 . . . . . . . . . . . . . .  X X X X X X X X X X X  . . . . . . .  XXXXX 

6.7500 . . . . . . . . . . . . . .  X X X X X X X X X X X  . . . . . .  X X X X X X X  

6.2755 . . . . . . . . . . . . .  XXXXXXXXXXXXX . . . . . .  XXXXXXX 

5.6696 . . . . . . . . . . . .  ~ . . . . . .  XXXXXXX 

4.6000 . . . . . . . . . . . .  XXXXXXXX/4XXXXXX . . . . .  XXXXXXXXX 

4.1667 . . . . . . . . . . . .  ~ .... XXXXXXXXXXX 

4.0000 . . . . . . . . . . . .  XXX . X X X X X X X X X X X  X X X  

3.8373 . . . . . . . . . . .  X X X  . X X X X X X X X X X ~  X X X  

3.4286 . . . . . . . . . . .  ~ XXX XX.XXXXXXXXXXX XXX 

3.2500 . . . . . . . . . . .  ~ ~ 

2.3000 . . . . . . . . . .  ~ X X X  
2.0000 . . . . . .  XXX . . ~ XXX 

1.6364 . . . . . .  XXX . ~ XXX 
1,4881 . . . . . .  XXX XXXXXXXX XXX 

1,3125 . . . . . .  XXX ~ 

1,1795 . . . . . .  XXXXXX 

0.8942 . . . . . .  XXXXXXXXXXXXXXXXXXXXXXXXXXX ~ X X X  

0,5939 . . . . . .  XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

0.1994 . . . . .  X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X ~  

0.1923 . . . .  ~ X X X X X X X X X  

0.1441 . . . XXXXXX 
0.0000 X X X X X X X X X X X X X X ~  

F i g .  1 1 .  Clustering of (3,3) bicliques. 

position; again this conclusion is matched by both our visual representation and all our 
centrality measures given in previous sections. 

Clearly, we can define extensions of n-cliques, n-clubs and n-clans to n-bicliques, 
n-biclubs and n-biclans. The extensions are in many senses unnatural since n would 
need to be odd. One relaxation of  the standard clique is the notion of  a k-plex (Seidman 
and Foster, 1978). This can be used as a basis for relaxing the biclique condition. We 
define an (1,m) biplex as a maximal bipartite graph with vertex sets V 1 and V 2 of  sizes 
p and q, respectively, where every member of  V l is connected to (q - m) vertices in V 2 
and every member of  V 2 is connected to ( p  - l) members of  V l (see Fig. 13). Clearly a 
biclique is a (0,0) biplex. This relaxation has the advantage that we can take account of  
the different sizes of the vertex sets of the original graph. We can retain a strong 
condition for one vertex set and a much weaker condition for the other. We shall pursue 
the properties and applications of  biplexes in a subsequent paper. 

An alternative approach to finding subgroups is based on block modelling and 
traditional clustering techniques. The FACTIONS routine in UCINET takes the bipartite 

i: MYRNA RUTH SYLVIA DOROTHY E8 E9 EIO El2 

2: EVELYN LAURA THERESA BRENDA FRANCES E3 E5 E6 E8 

3: LAURA THERESA BRENDA ELEANOR E5 E6 E7 E8 

4: RUTH SYLVIA NORA HELEN El0 El2 El3 El4 

F i g .  1 2 .  L i s t  o f  ( 4 , 4 )  bicliques. 
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Fig. 13. Example of a (1,1) biplex. 

graph as input and uses a combinatorial optimization algorithm called Tabu Search 
(Glover, 1989) to assign nodes to as many clusters as hypothesized by the user so as to 
maximize a fit criterion. The fit criterion is a correlation between the observed data and 
an idealized pattern in which the density of  ties within groups is 100% and the density 
of  ties between groups is 0%. The results of  this routine (Fig. 14) further confirm our 
visual representation of  the data. The revealed groups correspond to both the visual 
interpretation of  the map in Fig. 7 and the clusters found using biclique overlap. There is 
also a near perfect agreement with the conclusions of  Davis, Gardner and Gardner. The 
only difference is that Ruth is only placed in one group; this is of  course inevitable using 
this routine as every actor must be assigned to one and only one group. 

Note, however, that while the correlation between the blocked data and idealized 
pattern matrix is adequate, it can never be really high because the bipartite structure 
prevents ties of  the same type from being adjacent. Hence, the maximum fit possible is 

Correlation : 

17 OLIVIA 
18 FLORA 
11 MYRNA 
12 KATHERINE 
13 SYLVIA 
14 NORA 
15 HELEN 
16 DOROTHY 
29 Eli 
10 VEKNE 
27 E9 
28 El0 
31 El3 
30 El2 
32 El4 

9 RUTH 
1 EVELYN 
2 LAURA 
3 THERESA 
4 BRENDA 
5 CHARLOTTE 
6 FRANCES 
7 ELEANOR 
8 PEARL 

25 E7 
26 E8 
19 E1 
20 E2 
21 E3 
22 E4 
23 E5 
24 E6 

0.375 

1 1 1 1 1 1 1 1 2 1 2 2 3 3 3  2 2 1 2 2 2 2 2  
7 8 1 2 3 4 5 6 9 0 7 8 1 0 2  9 1 2 3 4 5 6 7 8 5 6 9 0 1 2 3 4  
O F M K S N H D E V E E E E E  R E L T B C F E P E E E E E E E E  

1 I I  
1 i i  

1 Ii 1 
1 11111 

1 iiiii 
1 1 11111 

1 1 1111 
1 Ii 1 

ii ii 1 
11 1 

111111 1 ii 
111111 1 

1111 1 
111111 1 1 

iiii 1 

1 
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11 
1 1 
11 

1 

11 
11 1 1 

11 1 
1 1 1 1 1 1 1  

1 11111 11 
1 11 11111 

1 111 1111 
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1 1 1 11 
1 11 11 

1 1 1 

1 
1 

iii 1 
iii ii 1 

1 
1 

I iiii i i 
iiiii iii 

II 1 
iii 
iiiiii 
1 iii 

I i i i i i i i  
iiii IIi 

1 
1 

Fig. 14. Output of FACTIONS procedure with bipartite graph as input. 
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Fit: 0.518 

1 EVELYN 
2 LAURA 
3 THERESA 
4 BRENDA 
5 CHARLOTTE 
6 FRANCES 
7 ELEANOR 
8 PEARL 
9 RUTH 

10 VERNE 
ii MYRNA 
12 KATHERINE 
13 SYLVIA 
14 NORA 
15 HELEN 
16 DOROTHY 
17 OLIVIA 
18 FLORA 

iiiii 
12345678 901234 
EEEEEEEE EEEEEE 

iiiiii 1 
iii iiii 

iiiiiii 
1 

1 

I 
llllll 
Iii 1 
1 ii 1 

fill 
1 1 1 

1 ii 1 

Ii 1 1 
1 ii 1 
1 ii IIi 

ii ii IIi 
ii iiiiii 

Ii iiiii 
1 II 1 

1 1 
1 1 

Fig. 15. GENFAC2 routine results. 

considerably less than 1.0. In cases where the data have clear enough structure, this is 
not a problem - -  we simply remember to adjust our expectations of  the fit criterion 
downward. However, in cases where the structure is not terribly clear, the lack of  ties 

1 

i0 

Ii 

4 

5 

6 

7 

8 

26 

31 

32 

12 

34 

33 

23 

24 

V H B C DA S 

P 

UF 1 1 

G 1 1 1 

C 1 

K 1 1 

Q 1 

B 1 

D 1 

BETA 1 

ZP 1 1 

J 1 1 

GG 1 1 

UR 1 1 

Y 1 1 1 

CC 1 
X i 1 

1 

1 1 

1 

1 1 

13 TS 1 i 1 1 

2 T 1 1 

3 TT 1 

18 F 1 1 

21 INT 1 1 

22 SP 1 1 1 

19 THETA 1 1 

20 S 1 1 1 

25 CHI 1 1 

9 DD 1 1 

27 V 1 1 1 

28 DC 1 1 1 

29 Z 1 1 1 1 

3O ZZ 1 1 1 

14 DZ 1 i 1 1 1 

15 CV 1 1 1 

16 JV 1 1 1 1 

17 PHI 1 

Fig. 16. Presence /absence  of features (columns) of  language sounds consonants only). Feature legend: 
V = voiced, H = high, B = back, A = anterior, S = strident, C = coronal, D = delay. Source: Crystal (1987). 
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within vertex sets could interfere with the algorithm's ability to find the best groupings. 
Therefore, it seems advisable to develop a special procedure specifically designed for 

finding subgroups in 2-mode data. Taking a block modelling and combinatorial opti- 
mization approach, this is not a difficult task. We have written a new routine called 
GENFAC2 (see Footnote 5 for availability) which takes as input the raw 2-mode data 
matrix (women-by-events) and uses a genetic algorithm (Goldberg, 1989) to find a PAIR 
of partitions (one of the rows and one of the columns) that maximizes the same fit 
criterion described above. The results are given in Fig. 15. Note that one group consists 
of women 1-9 and events 1-8, while the other group consists of women 10-18 and 
events 9-14. These are the same groups found by the previous method, but these were 
found faster because the data matrix is smaller (18 × 14 rather than 32 × 32). 

GENFAC2 is a general-purpose 2-mode clustering routine that can be used in a wide 
variety of settings. For example, linguists classify language sounds according to a series 
of features including the locations in the mouth where the sounds are formed. We can 
use an algorithm like GENFAC2 to simultaneously cluster the language sounds and the 
features into collections that go together. See Fig. 16 for the results. 

8. Positions 

Positions in 2-mode data have been discussed by Borgatti and Everett (1992). In 
essence we are able to apply our normal methods to the incidence matrix and this is 
equivalent to applying the techniques to the bipartite graph. Routines able to work 
directly on incidence data are available on the Internet (see Footnote 5), using algo- 
rithms similar to the 2-mode fractions presented earlier. 

9. Discussion 

The purpose of this paper was to develop network techniques for 2-mode data. We 
have shown how a number of standard methods can be applied to 2-mode data and 
briefly demonstrated how they work on one particular data set. There are a variety of 
potential applications for this type of analysis. For example, medical anthropologists 
frequently work with 1 / 0  illness-by-treatment matrices in which native informants 
indicate which treatments are used with which illnesses. Similarly, other anthropologists 
work with item-by-use matrices, frame substitution data, and other what-goes-with-what 
kinds of data. Taxonomists also use binary 2-mode species-by-characteristic matrices. 
Linguists characterize sounds in terms of a set of features that describe how the sounds 
are formed by the mouth. Marketing researchers describe product brands in terms of 
collections of binary features. Freeman and White (1993) also suggest a number of 
potential application areas for lattice representations; clearly any data which can make 
use of the lattice representation can make use of the methods outlined here (and vice 
versa). In addition, by dichotomizing data it is possible to use the techniques outlined 
here to analyze most social science data from contingency tables to informant-by-varia- 
ble matrices. 
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