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ABSTRACT 

The effects of population size and growth rate on population forecast accuracy have been 

well documented.  For example, we know that small places generally have larger errors 

than large places; that errors are generally higher for places with high growth rates than 

places with low growth rates; and that size of error generally remains more stable over 

time than does the direction of error.  In this paper, we delve more deeply into these 

relationships using data for 2,482 counties in the United States and expand the analysis to 

include a third explanatory variable, prior forecast error.  We use regression analysis to 

analyze the effects of these variables on the precision and bias of population forecasts for 

a number of launch years and forecast horizons between 1900 and 2000.  We develop a 

variety of regression models, some using a single explanatory variable, some using all 

three, and some using alternative functional forms of the variables.  We find that: 1) All 

three explanatory variables have consistent and statistically significant effects on 

precision, but the growth rate has the most consistent effect on bias; 2) Alternative 

nonlinear functional forms of the regression models generally perform better than a linear 

form for population size and growth rate, but not for prior error; 3) For our measure of 

precision, the signs and levels of significance for all three explanatory variables remain 

quite stable over time but the regression coefficients themselves vary substantially; 4) For 

our measure of bias, the signs and levels of significance remain stable over time only for 

the growth rate variable; and 5) On balance, the population growth rate contributes 

slightly more to the discriminatory power of the regression models than does population 

size and both contribute more than prior forecast error.  These findings provide a new 

perspective on the precision and bias of small-area population forecasts.  
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INTRODUCTION  

 Population projections at the state and local levels are used for a wide variety of 

planning, budgeting, and analytical purposes.  Although they are sometimes used as 

conditional outcomes of a hypothetical set of initial conditions and assumptions, they are 

used most frequently as forecasts or predictions of future population.  The importance of 

the purposes for which these forecasts are used (e.g., opening a new business, closing an 

elementary school, enlarging a power plant, or relocating bus stops) makes it essential to 

evaluate forecast accuracy from as many perspectives as possible and to note any patterns 

that might be observed.   

 Many studies have investigated the impact of population size and growth rate on 

forecast accuracy by analyzing forecast errors within broad size and growth rate 

categories.  Measuring population size in the launch year and growth rate over the base 

period, these studies have generally found precision (i.e., accuracy regardless of the 

direction of error) to be positively related to population size and to have a u-shaped 

relationship with the growth rate, with the smallest errors occurring in places with the 

smallest growth rates and increasing as growth rates deviate in either direction from these 

levels (e.g., Keyfitz 1981; Rayer 2008; Smith and Sincich 1992; Stoto 1983; White 

1954).  They have generally found bias (i.e., accuracy accounting for the direction of 

error) to be unrelated to population size but positively related to the growth rate (e.g., 

Isserman 1977; Rayer 2008; Smith 1987; Tayman 1996). 

 In addition to focusing on broad population size and growth rate categories, most 

previous studies have been based on a relatively small number of places and time periods 

and have not delved deeply into the nature of the relationships connecting population 
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size, growth rates, and forecast accuracy.  To our knowledge, only one study has 

approached the issue using regression analysis (Tayman, Schafer, Carter 1998).  That 

study examined 11 aggregated population size categories ranging from 500 to 50,000 in 

San Diego County.   

 In this study, we investigate population forecast accuracy from a disaggregate 

perspective, using a data set encompassing 2,482 counties in the United States from 1900 

to 2000.  We evaluate several alternative regression models to explain patterns in 

absolute and algebraic percent forecast errors for individual counties.  We extend the 

analysis to include not only the effects of population size and growth rates on forecast 

accuracy but a third variable as well, prior forecast error.  This variable has been found to 

be useful in developing empirical prediction intervals (Rayer, Smith, and Tayman 2007; 

Smith and Sincich 1988) but to our knowledge it has not been evaluated as an 

independent determinant of population forecast accuracy.  The specific questions we 

address are: 

1. What functional forms best describe the relationships between forecast accuracy 

and population size, growth rate, and prior error? 

2.  How much of the variation in forecast accuracy can be explained by differences 

in population size, growth rate, and prior error? 

3. What are the relative contributions (strengths) of population size, growth rate, and 

prior error as determinants of forecast accuracy? 

4. How do these relationships vary over time and by length of forecast horizon? 

We believe this analysis enhances our understanding of the nature of population growth 

and the determinants of the precision and bias of small-area population forecasts. 
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DATA  

 We conducted our analyses using a data set covering all counties or county 

equivalents in the United States that did not experience significant boundary changes 

between 1900 and 2000 (Rayer 2008).  This data set included 2,482 counties, 79 percent 

of the national total.  For each county, we collected information on population size in the 

launch year (the year of the most recent data used to make a forecast), growth rate over 

the base period (in this study, the 20 years immediately proceeding the launch year), and 

forecast errors for 10-, 20-, and 30-year horizons.  The launch years included in the data 

set were all decennial census years from 1920 to 1990. 

 Forecasts for each launch year were derived from five simple extrapolation 

techniques: linear, exponential, share of growth, shift share, and constant share (Rayer 

2008).  The forecasts analyzed in this study were calculated as the average of the 

forecasts from these five techniques after excluding the highest and lowest.  They refer 

solely to total population; no forecasts of age, sex, race, or other demographic 

characteristics were made.  Simple techniques such as these are frequently used for small-

area projections and have been found to produce forecasts that are at least as accurate as 

those produced using more complex or sophisticated techniques (e.g., Long 1995; 

Murdock et al. 1984; Smith and Sincich 1992; Stoto 1983).   

 Forecast error was calculated as the percent difference between the population 

forecasted for a particular year and the population for that year counted in the decennial 

census.  Errors were measured in two ways, one ignoring the direction of error (called 

“absolute” errors) and the other accounting for the direction of error (called “algebraic” 
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errors).  The first is a measure of the precision of population forecasts and the second is a 

measure of bias.   

 Table 1 summarizes population size and growth characteristics for counties in the 

data set.  Although mean population size more than doubled between 1920 and 1990, 

median population size increased by only 27%.  The 90th percentile population size grew 

by 161%, but the 10th percentile population size barely changed.  Mean growth rates were 

higher than median growth rates in every time period and fluctuated substantially over 

time.  In all time periods, between one-quarter and one-half of all counties lost 

population.  For more detailed information on the data set and forecasting techniques, see 

Rayer (2008). 

(Table 1 about here) 

ANALYSES 

 We analyzed the impact of three explanatory variables we believe affect the size 

and/or direction of population forecast errors: population size in the launch year (Size), 

population growth rate over the 20-year base period (GR), and forecast error for the time 

period immediately prior to the launch year (Prior).  Although the first two variables have 

been considered in numerous previous studies, the third has not.  Yet, if some places are 

particularly easy or difficult to forecast accurately due to factors other than population 

size and growth rate, prior forecast error may serve as a proxy for those factors.  For 

example, the 10-year forecast error for launch year 1950 may be a useful predictor of the 

10-year forecast error for launch year 1960.  

Table 2 provides a summary of the relationships analyzed in this paper.  As seen 

in the top two panels, the mean absolute percent error (MAPE) has a negative 
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relationship with population size and a u-shaped relationship with the growth rate, 

whereas the mean algebraic percent error (MALPE) has a positive relationship with both 

population size and growth rate.  A first three relationships are consistent with the 

findings of most previous studies, but a positive relationship between population size and 

bias is not.  We believe the latter relationship is spurious, caused by a positive correlation 

between population size and growth rate (Smith, Tayman, and Swanson 2001; Tayman et 

al 1998).  We return to this possibility later in the paper. 

(Table 2 about here) 

The bottom two panels of Table 2 show the relationship between prior error and 

forecast accuracy.  Prior absolute percent errors display a strong positive relationship 

with subsequent MAPEs and a weak positive relationship with subsequent MALPEs.  

Prior algebraic percent errors display a strong u-shaped relationship with subsequent 

MAPEs and a moderate positive relationship with subsequent MALPEs.  We are not 

aware of any previous studies that have evaluated these relationships. 

 Table 2 illustrates the approach taken in most studies of the relationships between 

population characteristics and population forecast accuracy.  To examine these 

relationships more closely, we used regression analysis to investigate the effects of 

population size, growth rate, and prior error on population forecast errors.  We developed 

several alternative regression models: 1) Each explanatory variable by itself in a simple 

univariate model; 2) Alternative functional forms of the three single-variable models; 3) 

The three explanatory variables together in a simple multivariate model; and 4) 

Alternative functional forms of the multivariate model.  We evaluated both absolute and 

algebraic percent errors as measures of precision and bias, respectively.   
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 Based on theoretical considerations, the results of previous studies, and the data 

shown in Table 2, we developed the following hypotheses: 1) Increases in population size 

will improve precision but have no consistent effect on bias; 2) Increases in the absolute 

value of growth rates will reduce precision; 3) Increases in algebraic growth rates will 

reduce downward bias in places losing population and raise upward bias in places gaining 

population (i.e., they will have a positive effect on algebraic percent errors); 4) Increases 

in the absolute value of prior errors will reduce precision; and 5) Increases in prior 

algebraic errors will have no consistent effect on bias.   

 Because we use absolute values of growth rates and prior errors in regressions 

related to precision and algebraic values in regressions related to bias, we identify the 

former as GR-Abs and Prior-Abs and the latter as GR-Alg and Prior-Alg.  When used as 

an explanatory variable, prior error is measured using the same number of years as the 

forecast horizon (e.g., for forecasts covering a 20-year horizon, we used the error for the 

20-year forecast ending in the launch year). 

Results Using Combined Data 

 We started by combining all the forecasts into three large data sets.  We combined 

all 10-year forecasts with launch years from 1930 to 1990 into one data set (n = 17,374); 

all 20-year forecasts with launch years from 1940 to 1980 into a second data set (n = 

12,410); and all 30-year forecasts with launch years from 1950 to 1970 into a third data 

set (n = 7,446).  Then, we ran a series of regressions for each of the three data sets.   

 Simple Univariate Models.  Regression coefficients and adjusted R2 values for the 

simple univariate models are shown in Table 3.  The top panel shows the results for 

absolute percent errors.  With only one exception, all three explanatory variables had the 
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expected signs and were statistically significant (α = 0.01) for all three forecast horizons: 

increases in population size reduced errors, increases in the absolute value of the growth 

rate raised errors, and increases in the absolute value of the prior error raised errors.  The 

only exception was the coefficient for population size for 30-year horizons, which was 

very small and statistically insignificant.  As shown by the small adjusted R2 values, 

population size and growth rate did not explain much of the variation in the dependent 

variable; prior error performed somewhat better than the other two variables in this 

regard. 

(Table 3 about here) 

 There was no clear relationship between the size of the regression coefficient and 

the length of the forecast horizon for population size, but there was some evidence of a 

positive relationship for growth rate and a negative relationship for prior error.  

Increasing the length of the forecast horizon had little effect on the discriminatory power 

of the model for population size, but had a small positive effect for growth rate and a 

small negative effect for prior error. 

 The bottom panel of Table 3 shows the results for algebraic percent errors.  

Population size had a significant positive effect for all three forecast horizons.  This result 

is inconsistent with our hypothesis that differences in population size have no consistent 

effect on the direction of forecast errors.  We believe this result was spurious, caused by 

the large sample size, the correlation between population size and other explanatory 

variables, and the impact of combining forecasts across launch years.  We investigate this 

possibility later in the paper. 
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 The growth rate had a significant positive effect on algebraic errors for all three 

forecast horizons, as expected.  The prior error had a significant positive effect on 

algebraic errors for the 10-year forecast horizon and significant negative effects for the 

20- and 30-year horizons.  We believe these mixed results support our hypothesis that the 

direction of prior errors provides no useful information regarding the direction of future 

errors.  We return to this point when we evaluate the results separately for each launch 

year.  For all three variables, the absolute values of the regression coefficients and the 

adjusted R2 values increased with the length of the forecast horizon. 

 Alternative Single-Variable Models.  Our next objective was to explore 

alternative functional forms to determine whether we could improve the fit of the single-

variable models.  We used the curve-fit procedure in the SPSS statistical package to 

identify the models with the fewest parameters and highest adjusted R2 values.  Our 

selection criteria were that an additional parameter had to be statistically significant and 

had to add at least 1% to the adjusted R2.  Because the discriminatory power of 

significance tests tends to decline as sample size increases (Henkel, 1976), these criteria 

helped us determine whether a parameter made a substantive contribution to the 

explanation of forecast error.  For comparability purposes, we used the same functional 

form for each launch/horizon combination even if it meant relaxing the adjusted R2 

criterion.  The details of the model selection procedures are contained in the Appendix.  

The regression coefficients and adjusted R2 values for the optimal alternative models are 

shown in Table 4.   

(Table 4 about here) 
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 The top panel shows the results for absolute percent errors.  For population size, 

the optimal model used the natural log of population size and the square of the natural 

log.  Both variables had significant effects on forecast errors for all three horizons.  The 

natural log had a negative effect and its square had a positive effect, indicating that 

increases in population size reduced absolute percent errors at a rate that declined as 

population size increased.  Figure 1 shows that the addition of the quadratic term flattens 

the curve and illustrates the asymptotic nature of the relationship between population size 

and absolute percent errors.  Coefficients for both variables increased as the forecast 

horizon became longer.  Adjusted R2 values for this model were substantially higher than 

for the simple univariate model. 

(Figure 1 about here) 

 For growth rates, the optimal model included squared and cubed forms of the 

variable as well as the variable itself.  The first and third terms had positive signs and the 

second had a negative sign, reflecting a positive but nonlinear relationship between 

growth rates and forecast errors.  As shown in Figure 2, the rate of increase in absolute 

percent errors tends to decline as growth rates increase, a pattern not evident when 

analyzing discrete growth rate categories.  All three regression coefficients were 

statistically significant for all three forecast horizons and became larger (in absolute 

terms) as the horizon became longer.  Again, adjusted R2 values were higher than for the 

simple univariate model. 

(Figure 2 about here) 

 For prior error, no alternative form could improve on the performance of the 

simple univariate model; that is, the simplest form proved to be as good as any of the 
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alternative forms we examined, given our selection criteria.  Results are therefore 

identical to those reported previously. 

 The bottom panel of Table 4 shows the results for algebraic percent errors.  The 

optimal models were the same as they were for absolute percent errors, with one 

exception: For population size, the optimal model did not contain the square of the 

natural log, which means the flattening effect for absolute percent errors shown in Figure 

1 is not present for algebraic percent errors.  

 The population size variable had a significant positive effect on algebraic errors 

for all three horizons.  As was true for the simple univariate model, this was counter to 

our expectations.  Regression coefficients and adjusted R2 values increased 

monotonically with the length of the forecast horizon.  We will return to this finding later 

in the paper. 

 All three forms of the growth rate variable were significant for all three horizons, 

with the first and third terms having positive signs and the second a negative sign.  These 

results indicate that there is a positive but nonlinear relationship between growth rates 

and algebraic forecast errors.  This positive relationship is consistent with our 

expectations.  Regression coefficients for all three growth rate variables increased (in 

absolute value) with the length of horizon, as did the adjusted R2 values.   

 The nature of the relationship between growth rates and algebraic percent errors is 

illustrated in Figure 3.  Forecasts have relatively little bias in areas with low rates of 

population growth or decline, but become substantially more biased as growth rates 

deviate in either direction from those low levels.  Again, these results demonstrate how 
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nonlinear subtleties in the relationship between growth rate and bias can be obscured 

when analyzing discrete growth rate categories.   

(Figure 3 about here) 

 Results for prior error were identical to those reported previously, with a 

significant positive effect for 10-year horizons and significant negative effects for 20- and 

30-year horizons.   

 Adjusted R2 values were higher for regressions involving absolute percent errors 

than for those involving algebraic percent errors in seven of the nine variable/horizon 

year combinations.  The only exceptions were for population size and growth rate in the 

30-year horizons.  This means the explanatory variables generally did a better job 

explaining variations in the precision of population forecasts than explaining variations in 

bias. 

 Simple Multivariate Models.  Our analysis thus far has focused on regressions 

containing a single explanatory variable, sometimes by itself and sometimes with 

alternative forms of the variable.  What happens to the regression coefficients and 

adjusted R2 values if we include all three explanatory variables in a single regression?  

Table 5 shows the results for the simple multivariate model. 

(Table 5 about here) 

 For absolute percent errors, all three variables had the expected signs and prior 

error was statistically significant for all three forecast horizons, whereas population size 

and the growth rate were not significant for the 30- and 20-year horizons, respectively.  

The regression coefficients did not change with the length of the forecast horizon for 

population size, but generally rose with the horizon for growth rate and declined for prior 
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error.  Adjusted R2 values for the multivariate model were substantially higher than for 

the simple univariate models for population size and growth rate.  For prior error, 

however, that was not the case, indicating that adding population size and growth rate did 

not add substantially to the discriminatory power of the simple univariate model.  This 

would seem to imply that much of the impact of prior errors on absolute percent errors in 

the single-variable model was accounted for by their relationship with population size 

and growth rate. 

 For algebraic percent errors, population size and growth rate had positive signs 

and, except for the growth rate for the 20-year horizon, were statistically significant for 

all other forecast horizons, whereas prior error had a significant positive effect for the 10-

year horizon and significant negative effects for 20- and 30-year horizons.  Regression 

coefficients generally rose with the length of forecast horizon for population size and 

growth rate, but not for prior error.  Adjusted R2 values increased with the length of 

horizon and were higher than the values for any of the simple univariate models.  Again, 

the mixed results for prior error are consistent with our hypothesis that the direction of 

prior errors provides no useful information regarding the direction of future errors.  The 

significant positive effects for population size, however, run counter to our expectations.  

We return to this point later in the paper. 

 Alternative Multiple-Variable Models.  We constructed multivariate regression 

models using the alternative functional forms of the explanatory variables described 

previously.  The results are shown in Table 6. 

(Table 6 about here) 
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 For absolute percent errors, every variable was statistically significant for every 

forecast horizon and every one had the same sign as in the single-variable regressions.  

For every variable except prior error, the absolute value of the regression coefficient 

increased with the length of the forecast horizon; for prior error, the opposite occurred.  

For population size and growth rate, this pattern most likely reflects the increase in 

absolute percent errors associated with longer forecast horizons.  The decreasing size of 

the coefficients for prior error reflects the diminished relevance of prior errors in 

predicting long-range forecast accuracy.  For all three horizons, adjusted R2 values were 

substantially higher than they were for the simple multivariate model or any of the 

univariate models, indicating that the more complex model did a better job explaining 

variations in precision than the simpler model did.   

 For algebraic percent errors, every variable was statistically significant for every 

forecast horizon, except population size for the 10-year horizon, and almost every one 

had the same sign as in the single-variable regressions.  The only exception was the prior 

algebraic error (Prior-Alg), which had a positive rather than a negative sign for the 30-

year horizon.  For population size, the regression coefficients increased steadily with the 

length of the forecast horizon; for prior error, they declined steadily (in absolute terms); 

and for the growth rate variables, they followed no consistent pattern.  Adjusted R2 values 

increased with the length of the forecast horizon and were higher than they were in the 

simple multivariate models. 

 For both the 10- and 20-year horizons, adjusted R2 values were substantially 

higher for regressions involving absolute percent errors than for regressions involving 

algebraic percent errors.  Although this was not true for the 30-year horizon (0.195 vs. 
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0.153), the two were closer in value than they were in the simple multivariate model.  

Again, this means the explanatory variables did a better job explaining variations in the 

precision of population forecasts than in explaining variations in bias. 

 Relationships among Explanatory Variables.  How are the relationships between 

each explanatory variable and population forecast error impacted by the other variables in 

the model?  To answer this question, we compared coefficients from the alternative 

single-variable model with coefficients as the other two variables were added 

sequentially to the regression equation.  For example, we examined how the population 

size coefficients changed after controlling first for the growth rate and then for both the 

growth rate and prior error. 

 High intercorrelations among independent variables can confound such 

comparisons, but the correlations between population size, growth rate, and prior error 

were relatively low.  Ignoring signs, they ranged from 0.015 to 0.157 for 10-year 

horizons; 0.016 to 0.171 for 20-year horizons; and 0.027 to 0.280 for 30-year horizons.  

The percent changes in the coefficients for population size, growth rate, and prior error 

are shown in Tables 7-9, respectively. 

(Tables 7-9 about here). 

 For the regressions relating population size to absolute percent errors, introducing 

the growth rate reduced the two population size coefficients by 15.8% and 21.5%, 

respectively, for 10-year horizons; by 14.5% and 19.9% for 20-year horizons; and by 

23.8% and 31.4% for 30-year horizons(Table 7).  Adding the prior error further 

accentuated these declines.   
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As expected, adding the growth rate variable had an even larger impact on the 

population size coefficients for the algebraic percent errors, with reductions ranging from 

36.2% to 69.7%.  Adding the prior error had no consistent effect on the results, reducing 

the coefficient for the 10-year horizon, increasing it for the 20-year horizon, and having 

little no impact for the 30-year horizon. 

 For the regressions relating growth rates to absolute percent errors, adding 

population size increased the coefficients between 8.7% and 22.7% (Table 8).  However, 

adding the prior error reduced the coefficients for all three horizons, actually making the 

signs negative for 10- and 20-year horizons.     

For algebraic percent errors, adding population size to the regressions reduced the 

magnitude of all but one of the growth rate coefficients.  Adding the prior error had an 

inconsistent effect, sometimes raising the coefficients and sometimes reducing them. 

The results presented in Tables 7 and 8 show that adding population size to the 

growth rate regression generally had less impact on the coefficients than adding the 

growth rate to the population size regressions.  The effects of adding the prior error were 

mixed, however, sometimes raising the coefficients and sometimes reducing them.   

 For the regressions relating prior errors to absolute percent errors, adding 

population size lowered the coefficients by 13.3%, 14.6%, and 28.2% for the 10-, 20-, 

and 30-year horizons, respectively (Table 9).  Adding the growth rate had an even greater 

impact, raising the reductions to 41.4%, 38.9%, and 66.4% for the three horizons. 

 There was no consistent impact of adding population size and growth rate to the 

regressions relating prior errors to algebraic percent errors, however.  Adding population 

size raised the coefficient for the 10-year horizon by 7.3% but lowered it by 11.2% and 
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53.3% for the 20- and 30-year horizons, respectively.  Adding the growth rate 

dramatically raised the coefficient for the 10-year horizon but dramatically lowered it for 

the 30-year horizon. 

Results by Launch Year 

 In order to evaluate the stability of results over time, we used the curve-fit 

procedures and selection criteria described above to identify the optimal model for each 

combination of launch year and forecast horizon.  In most instances, the optimal model 

was the same as the model found to be optimal in the analyses of the combined data sets.  

Although this model was sub-optimal in a few instances, we used it across the board in 

order to provide consistent comparisons for each combination of launch year and forecast 

horizon.  We do not believe enforcing this conformity substantively alters the findings.  

The Appendix discusses the model selection statistics by launch year. 

 Absolute Percent Errors.  The results for absolute percent errors are shown in 

Table 10.  With respect to signs and levels of significance, the results were quite 

consistent over launch years and forecast horizons.  The log of population size had a 

negative sign in every instance and was statistically significant 12 of 15 times.  The 

squared term had a positive sign in every instance and was significant 11 of 15 times.  

The growth rate had a significant positive effect in all launch years for all horizons and 

the squared and cubed terms had negative and positive coefficients, respectively, in every 

instance and were statistically significant in most instances.  These results are consistent 

with the results from the combined data sets shown in Table 6.  Prior error had a positive 

effect in every instance except one.  These effects were statistically significant in all 

seven launch years for 10-year horizons and in four of five launch years for 20-year 
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horizons, but were significant in only one launch year for 30-year horizons; this further 

strengthens the finding from the combined data that the impact of the prior error declines 

as the forecast horizon becomes longer. 

(Table 10 about here) 

 There were several differences across launch years, however.  Regression 

coefficients varied considerably from one launch year to another for all three forecast 

horizons.  The same was true for the adjusted R2 values, which ranged from 0.085 to 

0.301 for 10-year horizons, from 0.064 to 0.258 for 20-year horizons, and from 0.099 to 

0.197 for 30-year horizons.  Clearly, the explanatory variables were able to explain a 

substantially greater proportion of the variance in absolute percent errors in some time 

periods than in others. 

 In our discussion of Tables 3-6, we noted several relationships between regression 

coefficients and the length of the forecast horizon.  Were these relationships real or were 

they spurious, caused by different sets of launch years being included in the combined 

data sets (1930-1990 for 10-year horizons, 1940-1980 for 20-year horizons, and 1950-

1970 for 30-year horizons)?  Based on the data shown in Table 10, it appears some of 

these relationships were real.  For each launch year from 1940 to 1980, the absolute 

values of the regression coefficients increased monotonically with the length of the 

forecast horizon for population size and growth rate and declined monotonically for prior 

error; a similar pattern was seen in the combined data.  It appears that the impact of 

population size and growth rate on precision increases with the length of forecast horizon, 

whereas the impact of prior error declines. 
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 For adjusted R2 values, however, there was no clear relationship with the length 

of the forecast horizon; values sometimes rose and sometimes fell as the forecast horizon 

became longer.  It does not appear that the length of the forecast horizon has a consistent 

effect on the discriminatory power of the model. 

 Algebraic Percent Errors.  Earlier in the paper, we hypothesized that higher 

growth rates would have a significant positive effect on algebraic percent errors but 

population size and prior errors would have no consistent effects.  These hypotheses were 

not always supported in analyses based on combined data, but they find more support in 

the results for individual launch years (Table 11).  

(Table 11 about here) 

 The growth rate had a positive effect on algebraic percent errors in 14 of 15 

instances and was statistically significant 10 times.  The squared term had a negative 

coefficient in every instance and was significant nine times; the cubed term had a positive 

coefficient in all 15 instances and was also significant nine times.  These results support 

the hypothesis that high growth rates during the base period generally lead to an upward 

bias in population forecasts and high rates of population loss generally lead to a 

downward bias. 

 The log of population size sometimes had a significant positive effect on algebraic 

percent errors, sometimes had a significant negative effect, and sometimes had no 

significant effect.  The same was true for prior error.  These results support the 

hypothesis that there are no consistent relationships between algebraic percent errors and 

either population size or prior error; that is, neither population size nor prior errors serve 

as useful indicators of the direction of future forecast errors. 
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 Also, it appears that the positive relationship between adjusted R2 values and the 

length of forecast horizon shown in Tables 3-6 was spurious, caused by the specific 

launch years included in the combined data for each horizon.  An analysis of adjusted R2 

values for individual launch years shows that they sometimes increased and sometimes 

declined with increases in the forecast horizon.  Given these results, we do not believe the 

length of forecast horizon has any consistent impact on the discriminatory power of the 

model for either absolute or algebraic percent errors. 

 Impact of Explanatory Variables.  Which of the three explanatory variables 

contributes the most to the discriminatory power of the multivariate models?  One way to 

answer this question is to measure the reduction in adjusted R2 values that occurs when 

one of the explanatory variables (including the additional terms for population size and 

growth rate) is removed from the optimal form of the multivariate model.  We interpret 

this reduction as a measure of that variable’s contribution to the model’s discriminatory 

power.  The results of this exercise are shown in Tables 12 and 13. 

 For absolute percent errors, population size variables performed slightly better 

than growth rate variables when evaluated by launch year, contributing the most in four 

launch years for 10-year horizons, three launch years for 20-year horizons, and two 

launch years for 30-year horizons (Table 12).  Growth rate variables contributed the most 

in three, two, and one launch years, respectively.  When the results were averaged over 

all launch years, however, the growth rate variables performed slightly better than the 

population size variables.  For 10-year horizons, removing the growth rate variables 

reduced the adjusted R2 by 32% and removing the population size variables reduced it by 

27%.  For 20-year horizons, removing the growth rate variables reduced the adjusted R2 
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by 34% and removing the population size variables reduced it by 24%.  For 30-year 

horizons, the population size and growth rate variables were about equal: Removing each 

reduced the adjusted R2 by about 40%.  These results suggest that growth rates generally 

contributed slightly more than population size to the discriminatory power of the model, 

but the differences were very small. 

(Table 12 about here) 

 The results for prior error are greatly influenced by the functional form of 

population size and growth rate variables.  In the simple univariate models, the adjusted 

R2 values for prior error were substantially larger than they were for either population 

size or growth rate, especially for 10- and 20-year horizons (Table 3).  In the optimal 

forms of the single-variable models, these differences were largely wiped out due to the 

increased explanatory power of the enhanced models.  For 30-year horizons, in fact, the 

adjusted R2 value for prior error was smaller than for either population size or growth rate 

(Table 4).  In terms of discriminatory power, it appears that prior error is superior to the 

other two explanatory variables only when models contain a single form of the 

explanatory variable.   

 The results are a bit puzzling for models of algebraic percent errors.  As expected, 

prior error contributed the least to discriminatory power (on average) and removing that 

variable generally reduced the adjusted R2 value by a relatively small amount, especially 

for longer forecast horizons (Table 13).  However, although the average reductions were 

greatest for growth rate variables for both the 10- and 30-year horizons, there were a 

number of instances in which adjusted R2 values declined the most when population size 

variables rather than growth rate variables were removed from the model.  We don’t have 
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a good explanation for this finding, but it seems to be caused primarily by launch years 

1940 and 1950. 

(Table 13 about here) 

CONCLUSIONS  

 In this paper, we used regression analysis to analyze the effects of population size, 

growth rate, and prior error on the precision and bias of population forecasts for a large 

sample of counties in the United States.  We developed a variety of regression models, 

some using a single explanatory variable, some using all three, and some using 

alternative functional forms of the variables.  We found that: 1) All three explanatory 

variables had consistent and statistically significant effects on precision, both when 

modeled by themselves and when combined with each other; 2) The growth rate was the 

only explanatory variable that had a consistent effect on bias; 3) More complex 

functional forms of the regression models performed better than simple forms for 

population size and growth rate, but not for prior error; 4) With respect to precision, the 

signs and levels of significance of the regression coefficients remained quite stable over 

time for all three explanatory variables, but the size of the coefficients themselves varied 

considerably; 5) With respect to bias, the signs and levels of significance remained stable 

over time only for the growth rate variables; 6) Growth rates contributed slightly more 

than population size to the discriminatory power of regression models for absolute 

percent errors, but the differences were very small; and 7) The impact of the prior errors 

on precision declined substantially as the forecast horizon became longer. 

These findings confirm a number of results found previously but also shed light 

on several issues not considered before.  Previous studies provided a general view of the 
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relationships between population size and growth rate and forecast accuracy.  The 

statistical models presented in this study strengthened our understanding of the nature, 

strength, and temporal stability of these relationships and incorporated a variable not 

generally considered; namely, prior forecast error.  These models quantified the effects of 

changes in population size, growth rate, and prior error on the precision and bias of 

county population forecasts.  They also uncovered several subtleties in the relationships 

among these variables that were masked in previous analyses.   

The diminishing impact of increases in population size on improvements in 

forecast precision is quite evident in the asymptotic relationship.  The relationship 

between population size and bias is also asymptotic and was statistically significant in 

several instances.  Changes in the direction and strength of this relationship over time, 

however, are indicative of the unpredictable nature of this relationship.  In some 

instances, bias was negative for smaller areas and became increasingly more positive 

with increasing population size and in other instances the opposite pattern occurred.  

Increases in absolute growth rates had a diminishing impact on changes in 

forecast precision.  The cubic relationship between forecast bias and growth rate was 

more complex than the presumed linear form.  Bias tended to be relatively low in stable 

or slowly changing areas, but downward bias increased with larger rates of population 

decrease and upward bias increased with larger rates of population growth.   

The impact of prior absolute percent error on forecast precision was consistently 

negative (i.e., increases in prior errors reduced precision) but the impact of prior algebraic 

percent error was inconsistent.  Patterns in the adjusted R2 and coefficient values 
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indicated that prior error would be more effective in predicting errors for shorter forecast 

horizons than longer horizons.  

Growth rate and population size had more explanatory power than prior error in 

multivariate regressions and, on balance, the growth rate had slightly more explanatory 

power than population size.  Furthermore, the growth rate was clearly more influential 

than the other two explanatory variables in terms of its impact on their coefficient values.  

In particular, the effect of population size on bias was reduced substantially when the 

growth rate was added into the model. 

 These findings provide a new perspective on the precision and bias of subnational 

population forecasts.  However, the relatively low adjusted R2 values found in many of 

the models imply that population size, growth rate, and prior error by themselves can 

explain only a small amount of the county-to-county variation in forecast errors.  While 

we examined the individual effects of population size and growth rate, their joint effects 

or interactions may also have an impact on forecast precision and bias.  For example, it 

seems reasonable that the relationship between population size and forecast errors might 

vary with differences in the growth rate, with stable areas showing weaker relationships 

than rapidly changing areas.  Another factor not considered here is the impact of 

differences in geographic region, which may serve as a proxy for subnational factors that 

influence population forecast errors independently of differences in population size, 

growth rate, and prior error.  Clearly, many other factors are at work and much remains to 

be done to improve our understanding of the determinants of the accuracy of small-area 

population forecasts.  
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Appendix: Selecting the Functional Form 

Combined Data Set  

A wide range of functional forms were evaluated to determine the best fitting 

function to explain the absolute percent error (APE) and algebraic percent error (ALPE).  

Six univariate relationships were analyzed: population size-APE, growth rate-APE, prior 

error-APE, population size-ALPE, growth rate-ALPE, and prior error-ALPE.  The goal 

was to seek the most parsimonious function whose parameters were both statistically 

significant and added at least 1% to the unadjusted R2.  For comparability, our aim was to 

use the same function, which could vary across the six relationships, for each 

launch/horizon combination even if it meant relaxing the R2 criterion.  These functions 

were selected using the combined data sets analyzed separately for the 10-, 20-, and 30-

year forecast horizons.  The following functions were investigated: 

 
Equation 
 

Name 

1. y = b0 + (b1 * t) Linear 

2. y = b0 + (b1 * (ln(t)) Logarithmic 

3. y = b0 + (b1 * 1/t) Inverse 

4. y = b0 + (b1 * t) + (b2 * t2) Quadratica 

5. y = b0 + (b1 * t) + (b2 * t2) + (b3 * t3) Cubica 

6. ln(y) = ln(b0) + (b1 * ln(t)) Power 

7. ln(y) = ln(b0) + (ln(b1) * t) Compound 

8. ln(y) = b0 + (b1 / t) S 

9. ln(y) = b0 + (b1 * t) Growth 

10. ln(y) = ln(b0) + (b1 * t) Exponential 

  
a The quadratic and cubic functions were evaluated for Size, 
ln(Size), inverse (1/Size), GR-Abs, and GR-Alg. 
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The functions estimated depended on the signs of the independent and dependent 

variables.  Functions based on the natural log of the dependent variable could not be used 

to predict the ALPE because the natural log of a negative number is undefined.  For the 

same reason, the logarithmic function was also not viable in equations using the GR-Alg 

and Prior-Alg as independent variables to predict the ALPE.  For the APE equations, all 

functions were tested with two exceptions; the logarithmic and power functions could not 

be estimated using GR-Alg as the independent variable.  The specific relationships 

evaluated for the APE and ALPE used the following independent variables: Size, 

ln(Size), GR-Abs, GR-Alg, and either Prior-Abs or Prior-Alg.  

 Population Size and APE.  The selected function was the quadratic based on the 

ln(Size).  Both the selected function and (1/Size) improved upon the linear specification 

and explained more variation than any function based on the ln(APE).  The explained 

variances were similar between ln(Size) and (1/Size) and varied by less than one percent 

for 7 of the 9 comparisons (3 horizon years and linear, quadratic, and cubic functions).  

The R2 of ln(Size), however, was higher than (1/Size) for the quadratic and cubic 

functions for 30-yr horizons by 1.7% and 1.5%, respectively.  In moving from the linear 

to quadratic form, the R2 increase for ln(Size) ranged from 1.0% to 3.4% across horizon 

years, but hardly changed when the cubic term was added.  The quadratic function based 

on ln(Size) explained between 1% and 7% more variance across horizon years than the 

quadratic function base on Size. 

Growth Rate and APE.  The selected function was the cubic based on the GR-

Abs.  For 10- and 20-year horizons, the R2 increased by 3.8% and 2.0%, respectively 

after adding the quadratic term, but for the 30-year horizon the increase was below the 
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threshold at 0.8%.  Adding the cubic term further increased the R2 by 1.6% and 1.3% for 

the 10- and 30-year horizons, respectively, but for the 20-year horizon the increase was 

just below the threshold at 0.9%.  Using GR-Abs improved upon the equations based on 

GR-Alg, with R2 increases between 2.3% and 3.0% higher across horizon years for the 

cubic function.  Additionally, the signs of the coefficients using GR-Abs were more 

stable over time than the signs using GR-Alg. 

Prior Error and APE.  The selected function was linear.  The quadratic and cubic 

functions had an R2 close to the linear function and far higher than the other functions.  

Adding the quadratic and cubic parameters had little effect on the R2, with changes in R2 

ranging from 0.0% to only 0.3%.  

Population Size and ALPE.  The selected function was linear based on the 

ln(Size).  For 10- and 20-year horizons, the differences in R2 between Size and ln(Size) 

were less than the 1% threshold, but for the 30-year horizon the R2 for ln(Size) was 

substantially higher (8.8%).  The addition of the quadratic and cubic parameters to 

ln(Size) had virtually no impact on the R2.  

Growth Rate and ALPE.  The selected function was cubic based on GR-Alg. The 

quadratic parameter increased the R2 between 1.1% and 2.8% across forecast horizons, 

compared with the linear function.  The impact on R2 of the cubic parameter was not as 

consistent.  For 10- and 20-year horizons, the cubic term increased the R2 by only 0.4% 

and 0.6%, respectively, but for the 30-year horizon the cubic term raised the R2 by 3.2%. 

In predicting the ALPE, GR-Alg outperformed GR-Abs, opposite of the relationship 

between growth rate and APE.  The R2 of the cubic function based on GR-Alg was 

between 1.6% and 14.8% higher than GR-Abs across horizon years. 
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Prior Error and ALPE.  The selected function was linear, the same function found 

for the relationship between prior error and APE.  Adding the quadratic term did not 

change the R2 for the 10- and 30-year horizons and only increased it by 0.5% in the 20-

year horizon.  A similar pattern was seen with the addition of the cubic parameter. 

Individual Launch Years 

 Using the same criteria and functional forms discussed above, we evaluated, the 

six relationships for each of the 15 launch/horizon year combinations.  These 

combinations are: 1930 to1990 launch years for the 10-year horizon, 1940 to1980 launch 

years for the 20-year horizon, and 1950 to 1970 launch years for the 30-year horizon.   

Population Size and APE.  The quadratic function based on ln(Size) was the 

optimal function for 12 of the 15 launch/horizon year combinations.  For 3 combinations, 

the quadratic term added little to the explained variance (between 0.2% and 0.4%). 

Growth Rate and APE.  The cubic function based on GR-Abs was the optimal 

function for 10 of the 15 launch/horizon year combinations.  For 3 combinations a 

quadratic model would have met the criteria and a linear model would have been 

sufficient for the other 2 combinations. 

 Prior Error and APE.  The linear function was the optimal model in 11 of the 15 

launch/horizon year combinations.  In the 4 other combinations, a quadratic model would 

have met the criteria, adding 1.2% to 2.3% to the explained variance of the linear model. 

 Population Size and ALPE.  The linear function based on ln(Size) was the optimal 

model in 11 of the 15 launch/horizon year combinations.  In the 4 other combinations, a 

quadratic model would have met the criteria, adding 1.0% to 1.7% to the explained 

variance of the linear function. 
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 Growth Rate and ALPE.  The cubic function based on GR-Alg was the optimal 

model for 9 of the 15 launch year combinations.  In one instance a quadratic model would 

have been sufficient, and a linear model for the other 5 launch/horizon year 

combinations.  In 3 of these 5 combinations, however, the R2 did not exceed 0.3% for any 

functional form. 

 Prior Error and ALPE.  The linear function was the optimal model in less than 

half of the launch/horizon year combinations (7 of 15), the least consistent of any 

relationship.  In 2 instances a cubic model would have met the criteria adding 1.3% and 

4.2% to the explained variance of the linear model.  This rather large increase in the 

explained variance was caused by eight outlying cases.  In the other 6 launch/horizon 

year combinations, a quadratic function would have met the criteria, adding between 1% 

and 3% to the explained variance of a linear model. 
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Table 1.  County Population Size and Growth Characteristics, 1920-1990  

Size 1920 1930 1940 1950 1960 1970 1980 1990
   
Mean  35,044 40,615 43,336 49,453 58,502 66,122 72,950 79,054
Median  18,462 18,570 19,285 19,269 19,236 19,454 22,651 23,376
   
10 Percentile 5,876 6,483 6,409 6,124 5,780 5,572 6,052 5,820
90 Percentile 57,065 65,870 72,618 84,323 99,673 115,384 136,897 149,116
   
Growth Rate*   
   
Mean 70.9 26.7 30.9 11.4 13.2 13.6 24.0 22.0
Median 13.1 5.7 6.5 4.8 0.3 2.6 14.6 12.9
   
10 Percentile -13.4 -16.9 -13.2 -20.7 -28.5 -24.6 -14.3 -13.5
90 Percentile 105.1 62.3 51.5 45.2 66.4 58.5 68.9 65.0
   
% Negative 32.3 39.6 36.5 40.7 49.7 45.8 25.6 28.6
 
*  Percentage change over previous 20 years. 

 



 32

 
Table 2.  Selected Error Measures for Counties by Population Size,  
Growth Rate, and Prior Errora 

 
Size MAPE MALPE % Positive Sample Size 
     
< 7,500 14.2 -2.5 43.0 2,495 
7,500 to 14,999 10.8 -1.5 45.1 3,981 
15,000 to 29,999 9.0 -1.1 44.8 4,931 
30,000 to 99,999 8.3 -0.5 47.7 4,233 
100,000+ 8.3 0.3 51.3 1,734 

     
Growth Rate* MAPE MALPE % Positive Sample Size 
     
< -10% 11.0 -6.3 31.2 3,769 
-10.0 to 9.9% 8.0 -0.3 47.0 5,705 
10.0 to 24.9% 8.6 0.8 53.5 3,217 
25.0 to 74.9% 10.5 1.0 52.8 3,467 
75.0%+ 17.0 0.4 47.0 1,216 

  
Prior                     
Abs. % Error MAPE MALPE % Positive Sample Size 

    
43.5 
44.9 
43.4 
46.8 
50.2 

< 2.0% 
2.0 to 3.9% 
4.0 to 7.9% 
8.0 to 14.9% 
15.0 to 24.9% 
25.0+%  

8.0 
8.1 
8.5 
9.7 

11.9 
17.0  

-1.9 
-1.0 
-1.5 
-0.8 
-0.8 
-0.5 49.1 

2,486 
2,376 
4,072 
4,387 
2,561 
1,492  

    
Prior                   
Alg. % Error MAPE MALPE % Positive Sample Size 

   
-2.3 47.6 
-1.6 47.9 
-1.7 43.6 
-1.2 44.0 
-0.1 45.6 

< -15.0% 
-15.0 to -8.0% 
-7.9 to 0.0% 
0.0% to 7.9% 
8.0% to 14.9% 
15.0+%  

15.0 
10.5 
8.7 
7.9 
8.9 

12.4  1.3 52.3 

2,187 
2,188 
4,388 
4,546 
2,199 
1,866  

    
a  All 10-year horizon forecasts from launch years 1930 to 1990 

*  Percentage change 20 years prior to launch year  
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Table 3.  Univariate Regression Models 

Absolute Percent Errors 
 
                   Horizon                    
 
Ind. Var. 10 20 30 
  
Sizea    
  Coeffb   -0.002*   -0.002* < 0.001 
  Adj R2    0.002    0.001    0.000 
    
GR-Abs    
  Coeffb    0.007*    0.006*    0.101* 
  Adj R2    0.009    0.003    0.038 
    
Prior-Abs    
  Coeffb    0.256*    0.198*    0.131* 
  Adj R2    0.079    0.054    0.045 
 
Algebraic Percent Errors 

       Horizon 
 
Ind. Var. 10 20 30 
  
Sizea    
  Coeffb    0.002*    0.008*    0.030* 
  Adj R2    0.001    0.005    0.037 
    
GR-Alg    
  Coeffb    0.005*    0.009*    0.218* 
  Adj R2    0.002    0.003    0.108 
    
Prior-Alg    
  Coeffb    0.041*  -0.125*   -0.137*
  Adj R2    0.002   0.020    0.040 
 

a  Size measured in thousands of persons 
b  Unstandardized regression coefficient 
*  Significant at 0.01 
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Table 4.  Alternative Functional Forms of Single-Variable Regression Models  

Absolute Percent Errors 
 
                           Horizon  
 
Ind. Var.a 10 20 30 
  
Size    
  Ln Size -12.479* -19.299* -35.686* 
  (Ln Size)2    0.530*     0.826*     1.569* 
  Adj R2    0.050     0.038     0.067 
    
GR-Abs    
  GR-Abs    0.056*     0.072*    0.281* 
  (GR-Abs)2    -0.000017*    -0.000022*  -0.000964* 
  (GR-Abs)3    0.000000001*     0.000000002*    0.000000785* 
  Adj R2    0.062     0.031    0.060 
    
Prior-Abs    
  Prior-Abs    0.256*    0.198*    0.131* 
  Adj R2    0.079    0.054    0.045 
 
Algebraic Percent Errors 

                          Horizon 
 
Ind. Var.a 10 20 30 
  
Size      
  Ln Size    0.673*    2.431*   9.364* 
  Adj R2    0.003    0.013   0.125 
    
GR-Alg    
  GR-Alg    0.038*    0.076*    0.471* 
  (GR-Alg)2    -0.000012*   -0.000024*   -0.001772* 
  (GR-Alg)3  0.0000000001*    0.0000000018*    0.000001486* 
  Adj R2    0.018    0.020    0.169 
    
Prior-Alg    
  Prior-Alg    0.041*   -0.125*   -0.137* 
  Adj R2    0.002    0.020    0.040 
 

a  Unstandardized regression coefficients 
*  Significant at 0.01 
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Table 5.  Simple Multivariate Regression Model 
 
Absolute Percent Errors 
 
        Horizon 
 
Ind. Var.a 10 20 30 
    
Sizeb   -0.002*   -0.002*   -0.002 
GR-Abs    0.003*    0.001    0.085* 
Prior-Abs    0.248*    0.196*    0.111* 
    
Adj. R2    0.082    0.054    0.070 
 
 
Algebraic Percent Errors 
 
         Horizon 
 
Ind. Var.a 10 20 30 
    
Sizeb    0.002*   0.008*   0.020* 
GR-Alg    0.006*   0.003   0.187* 
Prior-Alg    0.048*  -0.119*  -0.027* 
    
Adj. R2   0.006   0.024   0.126 
 
a  Unstandardized regression coefficients 
b  Size measured in thousands of persons 
*  Significant at 0.01 
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Table 6.  Alternative Functional Forms of Multivariate Regression Models 
 
 
Absolute Percent Errors 
 
                          Horizon 
    
Ind. Var.a 10 20 30
    
Ln Size -8.749* -13.688* -25.414*
(Ln Size)2  0.345*    0.550*    1.009*
GR-Abs  0.049*    0.063*    0.320*
(GR-Abs)2  -0.000016*   -0.000021*   -0.001040*
(GR-Abs)3 0.000000001*    0.000000002*    0.000000814*
Prior-Abs  0.150*    0.121*    0.044*
  
Adj. R2  0.147    0.094    0.153
 
 
Algebraic Percent Errors 
 
                          Horizon 
   
Ind. Var.a 10 20 30
  
Ln Size   0.138   1.628*   4.599*
GR-Alg   0.047*   0.034*   0.419*
(GR-Alg)2   -0.000015*  -0.000011*  -0.00158*
(GR-Alg)3   0.000000001*  0.0000000001*   0.00000135*
Prior-Alg   0.094*  -0.082*   0.060*
  
Adj. R2   0.027   0.031   0.195
 
a Unstandardized regression coefficients 
*  Significant at 0.01 
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Table 7.  Impact of Growth Rate and Prior Error on Population Size 
Coefficientsa 

   
Absolute Percent Errors  

   
 Add Growth Rate  Add Growth Rate and Prior Error 

Forecast 
Horizon ln(Size) ln(Size)2 ln(Size) ln(Size)2  

10 -15.8% -21.5% -29.9% -34.9%  
20 -14.5% -19.9% -29.1% -33.4%  
30 -23.8% -31.4% -28.8% -35.7%  

    
Algebraic Percent Errors  

    
Forecast 
Horizon ln(Size) ln(Size)  

10 -69.7% -79.5%  
20 -36.2% -33.0%  
30 -49.7% -50.9%  

    
a Percent change from alternative single-variable model coefficients 
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Table 8.  Impact of Size and Prior Error on Growth Rate Coefficientsa 

  
Absolute Percent Errors 

   
 Add Size Add Size and Prior Error 

Forecast 
Horizon GR-Abs (GR-Abs)2 (GR-Abs)3  GR-Abs (GR-Abs)2 (GR-Abs)3 

10 10.7% 17.6% 16.7% -12.5% -5.9% -1.6%
20 16.7% 22.7% 21.1% -12.5% -4.5% -5.0%
30 21.4% 13.0% 8.7% 13.9% 7.4% 3.7%

    
Algebraic Percent Errors  

    
Forecast 
Horizon GR-Alg (GR-Alg)2 (GR-Alg)3 GR-Alg (GR-Alg)2 (GR-Alg)3 

10 -2.6% 0.0% -5.1% 23.7% 25.0% 18.4%
20 -18.4% -20.8% -20.6% -55.3% -54.2% -53.7%
30 -24.4% -22.2% -20.1% -11.0% -10.6% -9.4%

   
* Percent change from alternative single variable model coefficients 
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Table 9.  Impact of Size and Growth Rate on Prior Error Coefficientsa 

    

Absolute Percent Errors 
      

 Add Size  Add Size and Growth Rate   

Forecast 
Horizon Prior-Abs.  Prior-Abs.

 

10 -13.3%  -41.4%  

20 -14.6%  -38.9%  

30 -28.2%  -66.4%  

     

Algebraic Percent Errors 
    

Forecast 
Horizon Prior-Alg.  Prior-Alg.

 

10 7.3%  129.3%  
20 -11.2%  -34.4%  
30 -53.3%  -143.8% b  

    
* Percent change from alternative single variable model coefficients 
b Coefficient changed sign 
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Table 10.  Regression Results for Multivariate Model, by Launch Year and Horizon, 
Absolute Percent Errors 
 
 
10-Year Horizon 
                            
Ind. Var.a 1930 1940 1950 1960 1970 1980 1990 
        
Ln Size -25.583* -12.740* -3.995 -6.065* -11.319* -1.594 -5.814* 
(Ln Size)2 1.076* 0.524* 0.182 0.185* 0.442* 0.049 0.228* 
GR-Abs 0.091* 0.037* 0.122* 0.110* 0.077* 0.055* 0.103* 
(GR-Abs)2  -0.000046* -0.000012* -0.000267* -0.000326* -0.000280 -0.000155 -0.000376* 
(GR-Abs)3 0.000000005* 0.0000000001* 0.000000173 0.000000308* 0.000000294 0.000000137 0.000000484* 
Prior-Abs 0.084* 0.122* 0.117* 0.189* 0.258* 0.096* 0.098* 
        
Adj R2 0.301 0.129 0.107 0.208 0.183 0.085 0.197 
 
20-Year Horizon 
                              
Ind. Var.a 1930 1940 1950 1960 1970 1980 1990 
        
Ln Size --- -17.036* -6.208 -23.240* -19.751* -4.841* --- 
(Ln Size)2 --- 0.680* 0.238 0.922* 0.835* 0.186 --- 
GR-Abs --- 0.057* 0.229* 0.125* 0.159* 0.124* --- 
(GR-Abs)2  --- -0.000019* -0.000541* -0.000468* -0.000847* -0.000378* --- 
(GR-Abs)3 --- 0.000000001* 0.000000341* 0.000000430* 0.000001093* 0.000000372 --- 
Prior-Abs --- 0.067* -0.005 0.223* 0.266* 0.077* --- 
        
Adj R2 --- 0.064 0.067 0.258 0.196 0.114 --- 
 
 
30-Year Horizon 
                              
Ind. Var.a 1930 1940 1950 1960 1970 1980 1990 
        
Ln Size --- --- -17.751* -34.278* -19.898* ---  
(Ln Size)2 --- --- 0.687* 1.359* 0.798* --- --- 
GR-Abs --- --- 0.292* 0.375* 0.244* --- --- 
(GR-Abs)2  --- --- -0.000781* -0.001297* -0.001119* --- --- 
(GR-Abs)3 --- --- 0.000000525* 0.000001085* 0.000001490 --- --- 
Prior-Abs --- --- 0.009 0.022 0.149* --- --- 
        
Adj R2 --- --- 0.099 0.197 0.181 --- --- 
 

a  Unstandardized regression coefficients 
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Table 11.  Regression Results for Multivariate Model, by Launch Year and Horizon, 
Algebraic Percent Errors 
 
10-Year Horizon 
                            
Ind. Var.a 1930 1940 1950 1960 1970 1980 1990 
        
Ln Size 0.696 -3.991* -1.100* -0.061 3.079* -0.646* 0.631* 
GR-Alg 0.173* 0.004 0.014 0.185* 0.122* 0.062* -0.006 
(GR- Alg)2  -0.000086* -0.000002 -0.000151 -0.000711* -0.000687* -0.000700* -0.000168 
(GR- Alg)3 0.000000009* .0000000002 0.000000147 0.000000669* 0.000001107* 0.000000981* 0.000000210 
Prior- Alg 0.121* -0.056* 0.307* 0.152* 0.342* 0.075* 0.083* 
        
Adj R2 0.261 0.074 0.135 0.134 0.337 0.057 0.054 
 
20-Year Horizon 
                              
Ind. Var. a 1930 1940 1950 1960 1970 1980 1990 
        
Ln Size --- -7.876* -2.258* 3.325* 6.375* 1.399* --- 
GR- Alg --- -0.00023 0.048 0.265* 0.116* 0.067* --- 
(GR- Alg)2  --- -0.000002 -0.000208 -0.001157* -0.001166* -0.000979* --- 
(GR- Alg)3 --- 0.0000000002 0.000000196 0.000001061* 0.000002025* 0.000001404* --- 
Prior- Alg --- -0.084* 0.060* -0.089* -0.176* 0.012 --- 
        
Adj R2 --- 0.068 0.010 0.273 0.267 0.057 --- 
 
 
30-Year Horizon 
                              
Ind. Var. a 1930 1940 1950 1960 1970 1980 1990 
        
Ln Size --- --- 1.715* 3.240* 7.648* --- --- 
GR- Alg --- --- 0.099* 0.695* 0.276* --- --- 
(GR- Alg)2  --- --- -0.000398 -0.002672* -0.001799* --- --- 
(GR- Alg)3 --- --- 0.000000357 0.000002270* 0.000002873* --- --- 
Prior- Alg --- --- 0.012 0.160* -0.091* --- --- 
        
Adj R2 --- --- 0.013 0.341 0.317 --- --- 
 
a  Unstandardized regression coefficients 
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Table 12.  Percent Reduction in Adjusted R2 Values after an Explanatory Variable is 
Removed from the Multivariate Model, Absolute Percent Errors 
 
                  Length of Horizon 
 
Launch  
Year 

Variable 
Removed 10 20 30

     
1930 Size 37.5 --- ---
 GR 32.6 --- ---
 Prior 2.0 --- ---
  
1940 Size 28.7 37.5 ---
 GR 24.0 32.8 ---
 Prior 10.9 6.3 ---
  
1950 Size 1.9 10.4 40.4
 GR 42.1 83.6 61.6
 Prior 12.1 -1.5a 0.0
  
1960 Size 33.7 31.8 54.3
 GR 28.4 5.8 42.6
 Prior 12.5 19.8 0.5
  
1970 Size 40.4 30.6 24.9
 GR 7.7 7.7 14.4
 Prior 28.4 30.1 22.1
  
1980 Size 11.8 10.5 ---
 GR 30.6 41.2 ---
 Prior 18.8 9.6 ---
  
1990 Size 31.0 --- ---
 GR 60.9 --- ---
 Prior 5.1 --- ---
  
Average Size 26.4 24.2 39.9
 GR 32.3 34.2 39.5
 Prior 12.8 12.9 7.5
 
a  Adjusted R2 greater than the full 3-variable multivariate model 
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Table 13.  Percent Reduction in Adjusted R2 Values after an Explanatory Variable is 
Removed from the Multivariate Model, Algebraic Percent Errors 
 
                  Length of Horizon 
 
Launch  
Year  

Variable 
Removed 10 20 30

     
1930 Size 0.4 --- ---
 GR 88.1 --- ---
 Prior 5.0 --- ---
  
1940 Size 93.2 98.5 ---
 GR 1.4 -1.5a ---
 Prior 5.4 7.4 ---
  
1950 Size 3.7 80.0 33.3
 GR 0.0 0.0 33.3
 Prior 51.9 20.0 13.3
  
1960 Size 0.0 5.9 2.3
 GR 70.1 13.6 50.1
 Prior 10.4 1.5 9.1
  
1970 Size 14.5 27.3 18.9
 GR 10.4 4.5 5.4
 Prior 30.3 4.9 1.9
  
1980 Size 7.0 12.3 ---
 GR 71.9 64.9 ---
 Prior 12.3 0.0 ---
  
1990 Size 18.5 --- ---
 GR 38.9 --- ---
 Prior 14.8 --- ---
  
Average Size 19.6 44.8 18.2
 GR 40.1 16.3 29.6
 Prior 18.6 6.7 8.1
 
a  Adjusted R2 greater than the full 3-variable multivariate model 
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Figure 1.  Natural Log Functions- Population Size
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Figure 2.  Cubic Function- Absolute Value of Growth Rate 
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Figure 3. Cubic Function- Algebraic Growth Rate
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