Florida Population Studies Volume 50, Bulletin 177, April 2017 # Projections of Florida Population by County, 2020–2045, with Estimates for 2016 Stefan Rayer, Population Program Director Ying Wang, Research Demographer The Bureau of Economic and Business Research (BEBR) has been making population projections for Florida and its counties since the 1970s. This report presents our most recent set of projections and describes the methodology used to construct those projections. To account for uncertainty regarding future population growth, we publish three series of projections. We believe the medium series is the most likely to provide accurate forecasts in most circumstances, but the low and high series provide an indication of the uncertainty surrounding the medium series. It should be noted that these projections refer solely to permanent residents of Florida; they do not include tourists or seasonal residents. #### **State projections** The starting point for the state-level projections was the April 1, 2010 census population count by age, sex, race, and Hispanic origin, as adjusted by the National Center for Health Statistics (NCHS) in the Vintage 2014 bridged race population estimates. Projections were made in one-year intervals using a cohort-component methodology in which births, deaths, and migration are projected separately for each age-sex cohort in Florida for non-Hispanic whites, non-Hispanic nonwhites, and Hispanics. We applied three different sets of assumptions to provide low, medium, and high series of projections. Although the low and high series do not provide absolute bounds on future population change, they provide a reasonable range in which Florida's future population is likely to fall. Survival rates were applied by single year of age, sex, race, and Hispanic origin to project future deaths in the population. These rates were based on Florida Life Tables for 2007–2013, using mortality data published by the Office of Vital Statistics in the Florida Department of Health. The survival rates were adjusted upward each year until 2044 to account for projected increases in life expectancy. These adjustments were based on projected increases in survival rates released by the U.S. Census Bureau. We used the same mortality assumptions for all three series of projections because there is less uncertainty regarding future changes in mortality rates than is true for migration and fertility rates. Domestic migration rates by age and sex were based on Public Use Microdata Sample (PUMS) files from the 2005–2009 and 2011–2015 American Community Survey (ACS) 5-year estimates. We chose an average of those two sets of migration estimates because the recession of 2007–2009 had a substantial impact on migration patterns in Florida, affecting in- and out-migration in both time periods; in addition, projections based on more than one time period tend to be more accurate than those based on a single time period. The 2005–2009 data are the earliest ACS 5-year migration estimates that are available, and the 2011-2015 data are the most recent. For all three racial/ethnic groups, we applied smoothing techniques to the age/sex-specific migration rates to adjust for data irregularities caused by small sample size. The smoothed in- and out-migration rates were weighted to account for recent changes in Florida's population growth rates. Projections of domestic in-migration were made by applying weighted in-migration rates to the projected population of the United States (minus Florida), using the most recent set of national projections produced by the U.S. Census Bureau. Projections of out-migration were made by applying weighted out-migration rates to the Florida population. In both instances, rates were calculated separately for males and females by race and ethnicity for each age up to 90+. For the medium projection series, in-migration weights for non-Hispanic whites varied from 1.14 to 1.05, and out-migration weights varied from 0.97 to 0.95. For non-Hispanic nonwhites, in-migration weights varied from 1.10 to 1.05, and outmigration weights varied from 0.97 to 0.95. For Hispanics, in-migration weights varied from 1.09 to 1.05, and out-migration weights varied from 0.97 to 0.95. For the low projection series, the inmigration weights described above were lowered for all three racial/ethnic groups over time - from 5% in 2016-2020 to 11% in 2040-2045; the outmigration weights were raised by the same margins. For the high projection series, the in-migration weights described above were raised for all three racial/ethnic groups over time - from 5% in 2016-2020 to 11% in 2040-2045; the out-migration weights were lowered by the same margins. The distribution of foreign immigrants for the three racial/ethnic groups by age and sex was also based on an average of the patterns observed for 2005–2009 and 2011–2015. Again, we smoothed the estimates to account for irregularities in age/sex distribution of immigrants. For the medium projection series, we held foreign immigration at an average of the 2005–2009 and 2011–2015 levels; we also made minor adjustments to the racial/ethnic distribution of those migrants based on recent trends. For the low series, foreign immigration was projected to decrease by an additional 1,000 per year from the average of the 2005–2009 and 2011–2015 levels; for the high series, foreign immigration was projected to increase by an additional 1,000 per year. Foreign emigration was assumed to equal 25% of foreign immigration for each series of projections. Projections were made in one-year intervals, with each projection serving as the base for the following projection. Projected in-migration for each one-year interval was added to the survived Florida population at the end of the interval and projected out-migration was subtracted, giving a projection of the population age one and older. Births were projected by applying age-specific birth rates (adjusted for child mortality) to the projected female population of each race/ethnicity group. These birth rates were based on Florida birth data for 2007-2013 published by the Office of Vital Statistics in the Florida Department of Health. They imply a total fertility rate (TFR) of 1.66 births per woman for non-Hispanic whites, 2.08 births per woman for non-Hispanic nonwhites, 1.92 births per woman for Hispanics, and 1.83 births per woman for total population. These rates were adjusted in the short-term projections to make them consistent with recent fertility trends. We also raised them long-term since the age-specific fertility rates calculated using the 2007-2013 birth data were lower than they had been in the past due to the recession. By 2025, these rates imply a total fertility rate of 1.74 births per woman for non-Hispanic whites, 2.19 births per woman for non-Hispanic nonwhites, 2.05 births per woman for Hispanics, and 1.92 births per woman for total population. As a final step, projections for non-Hispanic whites, non-Hispanic nonwhites, and Hispanics were added together to provide projections of the total population. The medium projections of total population for 2017–2021 were adjusted to be consistent with the state population forecasts for those years produced by the State of Florida's Demographic Estimating Conference (DEC) held February 13, 2017. None of the projections after 2021 had any further adjustments. In this publication, we provide projections for 2020, 2025, 2030, 2035, 2040, and 2045. State projections for other years are available by request. #### **County projections** The cohort-component method is a good way to make population projections at the state level, but is not necessarily the best way to make projections at the county level. Many counties in Florida are so small that the number of persons in each age-sex category is inadequate for making reliable cohort-component projections, given the lack of detailed small-area data. Even more important, county growth patterns are so volatile that a single technique based on data from a single time period may provide misleading results. We believe more useful projections of total population can be made by using several different techniques and historical base periods. For counties, we started with the population estimate constructed by BEBR for April 1, 2016. We made projections for each county using four different techniques. After 2020, the projections were made in five-year increments. The four techniques were: - 1. Linear the population will change by the same number of persons in each future year as the average annual change during the base period. - 2. Exponential the population will change at the same percentage rate in each future year as the average annual rate during the base period. - 3. Share-of-growth each county's share of state population growth in the future will be the same as its share during the base period. - 4. Shift-share each county's share of the state population will change by the same annual amount in the future as the average annual change during the base period. We produced two sets of projections for each county for each projection year (2020, 2025, 2030, 2035, 2040 and 2045). For the first set, we used the same set of techniques and base period lengths as last year: base periods of five, ten, and fifteen years (2011–2016, 2006–2016, and 2001–2016) for the linear and share-of-growth techniques, yielding three sets of projections for each technique; and base periods of ten and twenty years (2006–2016 and 1996–2016) for the exponential and shift-share techniques, yielding two sets of projections for each technique. From these ten projections, we calculated four averages: one using all ten projections (AVE-10), one that excluded the highest and lowest projections (AVE-8), one that excluded the two highest and two lowest projections (AVE-6), and one that excluded the three highest and three lowest projections (AVE-4). Based on results from our ongoing projection evaluation research, this year we also created a second set of projections, for which we used a different combination of base period lengths for the same four projection techniques: base periods of two, ten, and twenty years (2014–2016, 2006–2016, and 1996–2016) for the linear and share-of-growth techniques, yielding three sets of projections for each technique; and base periods of five and fifteen years (2011–2016 and 2001–2016) for the exponential and shift-share techniques, yielding two sets of projections for each technique. Similar to the first set, we again calculated four averages from these ten projections (AVE-10, AVE-8, AVE-6, and AVE-4). We believe the combination of base period lengths and projection techniques in the second set to be preferable to those of the first set. The second set introduces, for the first time, the usage of very short base periods (two years), which - when combined with longer base periods - can improve forecast accuracy, especially for shorter term projections. The second set provides two projections for each base period length (2, 5, 10, 15, and 20 years), whereas the first set puts more emphasis on 10-year changes. Finally, the second set extends the range of base data used for the linear and share-of-growth techniques (from 5, 10, and 15 years to 2, 10, and 20 years), while still keeping the base data used for the exponential and shiftshare techniques ten years apart (5 and 15 years, versus 10 and 20 years in the first set). The number of projections for each technique (three for linear and share-of-growth, and two for exponential and shift-share) is the same in both sets. To provide for greater continuity with our previous county projections, we decided to average projections from the first and second set. We chose AVE-4 as the default technique for each county in each set, and then averaged those two averages. We then evaluated the resulting projections by comparing them with historical population trends and with the level of population growth projected for the state as a whole. For counties in which the average of AVE-4 from the two sets did not provide reasonable projections, we selected the technique producing projections that fit most closely with our evaluation criteria. For 59 counties we selected the default technique. For Brevard, Flagler, Lee, Osceola, Pinellas, St. Lucie, and Sarasota counties, we selected AVE-4 from the first set of projections; for Putnam County, we selected an average of projections made with the share-ofgrowth technique with base periods of five and fifteen years. Projections for all counties were adjusted to make projected changes for counties consistent with the total population change implied by the state projections. We also made adjustments in several counties to account for changes in institutional populations such as university students and prison inmates. Adjustments were made only in counties in which institutional populations account for a large proportion of total population or where changes in the institutional population have been substantially different than changes in the rest of the population. In the present set of projections, adjustments were made for Alachua, Baker, Bradford, Calhoun, Columbia, DeSoto, Dixie, Franklin, Gadsden, Gilchrist, Glades, Gulf, Hamilton, Hardee, Hendry, Holmes, Jackson, Jefferson, Lafayette, Leon, Liberty, Madison, Okeechobee, Santa Rosa, Sumter, Suwannee, Taylor, Union, Wakulla, Walton, and Washington counties. #### Range of county projections The techniques described in the previous section were used to construct the medium series of county projections. This is the series we believe will generally provide the most accurate forecasts of future population change. We also constructed low and high projections to provide an indication of the uncertainty surrounding the medium county projections. The low and high projections were based on analyses of past population forecast er- rors for counties in Florida, broken down by population size and growth rate. They indicate the range into which approximately three-quarters of future county populations will fall, if the future distribution of forecast errors is similar to the past distribution. The range between the low and high projections varies according to a county's population size in 2016 (less than 30,000; 30,000 to 199,999; and 200,000 or more), rate of population growth between 2006 and 2016 (less than 7.5%; 7.5-15%; 15-30%; and 30% or more), and the length of the projection horizon (on average, projection errors grow with the length of the projection horizon). Our studies have found that the distribution of absolute percent errors tends to remain fairly stable over time, leading us to believe that the low and high projections provide a reasonable range of errors for most counties. It must be emphasized, however, that the actual future population of any given county could be above the high projection or below the low projection. For the medium series of projections, the sum of the county projections equals the state projection for each year (except for slight differences due to rounding). For the low and high series, however, the sum of the county projections does not equal the state projection. The sum of the low projections for counties is lower than the state's low projection and the sum of the high projections for counties is higher than the state's high projection. This occurs because potential variation around the medium projection is greater for counties than for the state as a whole. #### Acknowledgement Funding for these projections was provided by the Florida Legislature. Copyright © 2017 by the University of Florida. ## Projections of Florida Population by County, 2020–2045, with Estimates for 2016 | County | Estimates _
April 1, 2016 | Projections, April 1 | | | | | | | |------------------------------------|------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--| | and State | | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | | | ALACHUA
Low
Medium
High | 257,062 | 252,800
265,500
278,000 | 252,500
275,200
295,400 | 252,100
283,100
312,100 | 250,800
290,300
328,900 | 248,900
296,700
345,700 | 246,400
302,700
362,700 | | | BAKER
Low
Medium
High | 26,965 | 26,200
27,800
29,400 | 26,000
28,700
31,300 | 25,800
29,500
33,200 | 25,400
30,100
35,000 | 25,000
30,600
36,800 | 24,500
31,100
38,500 | | | BAY
Low
Medium
High | 176,016 | 173,800
184,700
194,900 | 175,300
194,600
211,300 | 176,200
202,700
227,200 | 175,600
209,400
242,300 | 174,000
215,100
257,100 | 172,100
220,700
272,600 | | | BRADFORD
Low
Medium
High | 27,440 | 27,200
28,800
30,500 | 26,600
29,300
32,000 | 25,900
29,500
33,300 | 25,200
29,700
34,600 | 24,400
29,900
35,900 | 23,700
30,100
37,200 | | | BREVARD
Low
Medium
High | 568,919 | 572,500
595,700
616,900 | 583,500
625,500
661,800 | 592,900
649,200
704,000 | 596,300
666,300
741,200 | 597,700
681,700
777,800 | 598,200
696,100
815,100 | | | BROWARD
Low
Medium
High | 1,854,513 | 1,865,100
1,940,700
2,010,100 | 1,901,700
2,038,400
2,156,800 | 1,933,400
2,117,200
2,295,600 | 1,952,400
2,182,300
2,426,900 | 1,962,300
2,237,900
2,553,700 | 1,969,800
2,290,800
2,684,000 | | | CALHOUN
Low
Medium
High | 14,580 | 14,000
14,900
15,700 | 13,800
15,200
16,600 | 13,500
15,400
17,400 | 13,200
15,600
18,100 | 12,800
15,700
18,900 | 12,500
15,900
19,600 | | | CHARLOTTE
Low
Medium
High | 170,450 | 169,300
180,100
190,000 | 171,900
191,000
207,300 | 174,000
200,400
224,300 | 174,700
208,400
241,000 | 174,400
215,600
257,700 | 173,400
222,100
274,700 | | | CITRUS
Low
Medium
High | 143,054 | 141,300
148,400
155,300 | 142,000
154,500
166,000 | 142,700
159,600
176,400 | 142,500
163,800
186,300 | 141,500
167,100
195,700 | 140,000
170,000
204,900 | | | CLAY
Low
Medium
High | 205,321 | 209,500
223,400
235,000 | 218,700
244,200
263,600 | 226,400
262,100
291,800 | 232,300
278,700
320,500 | 236,900
294,100
350,100 | 240,100
308,300
380,400 | | | COLLIER
Low
Medium
High | 350,202 | 359,600
379,200
395,400 | 376,600
413,000
440,500 | 391,500
442,000
484,800 | 404,300
469,200
530,100 | 414,600
493,800
575,900 | 422,400
516,000
621,900 | | | COLUMBIA
Low
Medium
High | 68,566 | 67,700
71,100
74,500 | 67,800
73,700
79,300 | 67,800
75,800
83,900 | 67,500
77,600
88,300 | 66,900
79,100
92,600 | 66,000
80,300
96,600 | | | DESOTO
Low
Medium
High | 35,141 | 34,200
35,900
37,600 | 33,800
36,700
39,500 | 33,600
37,500
41,500 | 33,200
38,200
43,400 | 32,700
38,700
45,300 | 32,200
39,200
47,200 | | | DIXIE
Low
Medium
High | 16,773 | 16,200
17,200
18,200 | 16,000
17,700
19,300 | 15,800
18,100
20,400 | 15,600
18,400
21,400 | 15,200
18,700
22,400 | 14,900
18,900
23,400 | | | County | Estimates | Projections, April 1 | | | | | | | |---------------------------------------|---------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--| | and State | April 1, 2016 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | | | DUVAL
Low
Medium
High | 923,647 | 927,000
975,500
1,019,200 | 946,900
1,035,100
1,107,600 | 967,000
1,089,300
1,197,400 | 982,200
1,138,500
1,287,900 | 990,100
1,179,900
1,375,200 | 994,900
1,218,700
1,464,700 | | | ESCAMBIA
Low
Medium
High | 309,986 | 305,400
317,100
329,100 | 304,500
325,500
345,400 | 304,600
332,900
361,700 | 303,000
338,200
376,600 | 299,900
342,200
390,300 | 296,400
345,800
403,800 | | | FLAGLER
Low
Medium
High | 103,095 | 106,700
115,300
122,100 | 114,000
130,000
141,700 | 120,500
143,400
161,900 | 125,900
156,000
183,000 | 130,300
167,900
205,100 | 133,500
178,900
227,900 | | | FRANKLIN
Low
Medium
High | 11,916 | 11,400
12,100
12,800 | 11,200
12,400
13,500 | 11,000
12,600
14,200 | 10,800
12,800
14,800 | 10,500
12,900
15,500 | 10,200
13,000
16,100 | | | GADSDEN
Low
Medium
High | 48,486 | 46,900
49,200
51,600 | 46,000
49,900
53,800 | 45,400
50,600
56,100 | 44,700
51,300
58,400 | 43,900
51,900
60,700 | 43,000
52,300
62,900 | | | GILCHRIST
Low
Medium
High | 16,848 | 16,500
17,500
18,500 | 16,600
18,400
20,000 | 16,600
19,000
21,400 | 16,500
19,600
22,800 | 16,400
20,100
24,100 | 16,200
20,500
25,500 | | | GLADES
Low
Medium
High | 13,047 | 12,700
13,500
14,300 | 12,700
14,000
15,200 | 12,600
14,400
16,200 | 12,400
14,700
17,100 | 12,300
15,000
18,000 | 12,000
15,300
18,900 | | | GULF
Low
Medium
High | 16,628 | 16,100
17,100
18,100 | 16,000
17,700
19,200 | 15,800
18,100
20,400 | 15,600
18,500
21,500 | 15,400
18,800
22,600 | 15,100
19,100
23,700 | | | HAMILTON
Low
Medium
High | 14,665 | 14,400
15,300
16,200 | 14,200
15,600
17,000 | 13,900
15,900
17,900 | 13,700
16,200
18,800 | 13,400
16,400
19,700 | 13,100
16,600
20,600 | | | HARDEE
Low
Medium
High | 27,637 | 26,300
27,800
29,500 | 25,400
27,900
30,600 | 24,600
28,100
31,700 | 23,900
28,200
32,800 | 23,100
28,300
34,000 | 22,200
28,300
35,000 | | | HENDRY
Low
Medium
High | 38,370 | 37,400
39,200
41,100 | 36,900
40,100
43,200 | 36,400
40,600
45,000 | 35,800
41,100
46,800 | 35,300
41,700
48,800 | 34,600
42,100
50,700 | | | HERNANDO
Low
Medium
High | 179,503 | 179,600
191,100
201,400 | 183,900
204,600
221,700 | 187,600
216,300
241,900 | 190,100
227,000
262,300 | 191,200
236,200
282,500 | 191,000
244,400
302,500 | | | HIGHLANDS
Low
Medium
High | 101,531 | 100,300
105,400
110,300 | 100,800
109,600
117,800 | 101,000
113,000
124,900 | 100,600
115,600
131,500 | 99,600
117,600
137,700 | 98,500
119,600
144,100 | | | HILLSBOROUGH
Low
Medium
High | 1,352,797 | 1,376,300
1,466,900
1,543,800 | 1,435,500
1,602,900
1,730,200 | 1,487,600
1,722,900
1,917,500 | 1,521,800
1,824,900
2,099,200 | 1,546,600
1,919,900
2,285,300 | 1,562,000
2,007,100
2,474,800 | | | County
and State | Estimates
April 1, 2016 | Projections, April 1 | | | | | | | |---------------------|----------------------------|----------------------|--------------------|--------------------|--------------------|------------------------|------------------------|--| | | | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | | | LICINEC | 20.002 | | | | | | | | | HOLMES
Low | 20,003 | 19,100 | 18,500 | 18,000 | 17,300 | 16,800 | 16,200 | | | Medium | | 20,200 | 20,400 | 20,500 | 20,500 | 20,500 | 20,600 | | | High | | 21,400 | 22,300 | 23,100 | 23,800 | 24,700 | 25,500 | | | INDIAN RIVER | 146,410 | | | | | | | | | Low | | 147,100 | 151,300 | 154,600 | 156,600 | 157,600 | 157,800 | | | Medium
High | | 156,600
165,000 | 168,400
182,400 | 178,300
199,400 | 186,900
216,100 | 194,800
232,900 | 201,800
249,900 | | | J | | . 05,000 | .02, .00 | .55,.55 | 2.0/.00 | 202,500 | 2.3,300 | | | JACKSON
Low | 50,345 | 48,500 | 47,400 | 46,500 | 45,400 | 44,400 | 43,300 | | | Medium | | 50,900 | 51,400 | 51,800 | 52,100 | 52,500 | 52,800 | | | High | | 53,300 | 55,400 | 57,400 | 59,400 | 61,400 | 63,400 | | | JEFFERSON | 14,498 | | | | | | | | | Low | , | 13,900 | 13,500 | 13,200 | 12,800 | 12,400 | 11,900 | | | Medium
High | | 14,700
15,600 | 14,900
16,300 | 15,000
17,000 | 15,100
17,600 | 15,100
18,200 | 15,200
18,700 | | | підіі | | 15,000 | 10,500 | 17,000 | 17,600 | 16,200 | 16,700 | | | LAFAYETTE | 8,621 | 0.200 | 0.200 | 0.100 | 7,000 | 7.000 | 7.600 | | | Low
Medium | | 8,300
8,900 | 8,200
9,200 | 8,100
9,500 | 7,900
9,800 | 7,800
10,000 | 7,600
10,200 | | | High | | 9,500 | 10,200 | 10,900 | 11,500 | 12,200 | 12,900 | | | LAKE | 323,985 | | | | | | | | | Low | 323,303 | 333,000 | 350,300 | 364,800 | 376,100 | 385,500 | 392,500 | | | Medium | | 355,300 | 391,600 | 422,800 | 451,300 | 478,400 | 503,600 | | | High | | 373,600 | 422,300 | 470,200 | 518,800 | 569,600 | 621,900 | | | LEE | 680,539 | | | | | | | | | Low | | 701,800 | 740,600 | 772,900 | 802,000
962,900 | 825,800 | 843,700 | | | Medium
High | | 748,900
787,200 | 828,100
892,600 | 895,900
996,200 | 1,106,300 | 1,024,700
1,220,200 | 1,081,700
1,336,800 | | | J | 207.674 | | | | | | | | | LEON
Low | 287,671 | 286,900 | 291,400 | 295,500 | 297,500 | 297,400 | 296,300 | | | Medium | | 301,800 | 318,300 | 332,500 | 344,600 | 354,500 | 363,600 | | | High | | 315,500 | 340,900 | 365,900 | 390,100 | 413,100 | 436,300 | | | LEVY | 40,553 | | | | | | | | | Low | | 39,700 | 39,600 | 39,400
44.100 | 39,100 | 38,600 | 38,000 | | | Medium
High | | 41,700
43,700 | 43,000
46,300 | 48,700 | 44,900
51,100 | 45,600
53,400 | 46,200
55,700 | | | | | , | , | , | 2.,, | 23,133 | 22,133 | | | LIBERTY
Low | 8,736 | 8,500 | 8,600 | 8,600 | 8,500 | 8,400 | 8,300 | | | Medium | | 9,200 | 9,700 | 10,100 | 10,500 | 10,800 | 11,100 | | | High | | 9,800 | 10,600 | 11,500 | 12,400 | 13,300 | 14,200 | | | MADISON | 19,238 | | | | | | | | | Low | , | 18,300 | 17,700 | 17,200 | 16,700 | 16,200 | 15,700 | | | Medium
High | | 19,400
20,500 | 19,500
21,400 | 19,600
22,200 | 19,700
23,000 | 19,800
23,800 | 19,900
24,600 | | | = | | 20,500 | 21,400 | 22,200 | 25,000 | 23,000 | 24,000 | | | MANATEE | 357,591 | 260,400 | 207.000 | 405.000 | 420,100 | 429,700 | 420 200 | | | Low
Medium | | 368,400
388,700 | 387,900
425,700 | 405,900
458,700 | 487,700 | 511,800 | 438,200
535,200 | | | High | | 405,100 | 453,700 | 502,600 | 550,900 | 596,900 | 645,200 | | | MARION | 345,749 | | | | | | | | | Low | J 13/1 TJ | 349,000 | 359,000 | 368,000 | 375,000 | 379,300 | 381,900 | | | Medium | | 367,500 | 392,800 | 414,800 | 434,700 | 452,000 | 467,600 | | | High | | 383,800 | 419,900 | 455,700 | 491,700 | 526,900 | 562,200 | | | MARTIN | 150,870 | | | 4 | | | | | | Low
Medium | | 149,900
157,500 | 151,000
164,300 | 151,700
169,700 | 151,600
174,300 | 150,800
178,100 | 149,300
181,300 | | | High | | 164,800 | 176,400 | 187,600 | 198,200 | 208,500 | 218,500 | | | _ | | • | | • | | • | , | | | County | Estimates
April 1, 2016 | Projections, April 1 | | | | | | | |-------------------------------------|----------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--| | and State | | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | | | MIAMI-DADE
Low
Medium
High | 2,700,794 | 2,718,500
2,861,400
2,988,900 | 2,787,400
3,048,600
3,260,600 | 2,857,000
3,220,000
3,537,700 | 2,910,300
3,374,200
3,816,000 | 2,950,900
3,515,800
4,098,800 | 2,976,000
3,642,700
4,381,300 | | | MONROE
Low
Medium
High | 76,047 | 72,800
76,200
80,000 | 70,600
76,500
82,500 | 69,000
76,900
85,300 | 67,300
77,200
88,000 | 65,200
77,100
90,200 | 63,100
77,000
92,300 | | | NASSAU
Low
Medium
High | 77,841 | 77,900
83,900
89,200 | 80,400
91,200
99,900 | 82,400
97,600
110,600 | 83,700
103,400
121,600 | 84,300
108,700
132,700 | 84,300
113,500
144,000 | | | OKALOOSA
Low
Medium
High | 192,925 | 190,700
200,400
209,700 | 191,500
208,300
223,800 | 191,700
214,300
236,900 | 191,500
220,100
250,300 | 190,500
225,000
263,500 | 189,300
229,700
277,000 | | | OKEECHOBEE
Low
Medium
High | 40,806 | 39,900
41,900
43,900 | 39,700
43,100
46,400 | 39,400
44,000
48,700 | 38,900
44,700
50,800 | 38,400
45,300
53,000 | 37,700
45,900
55,200 | | | ORANGE
Low
Medium
High | 1,280,387 | 1,316,400
1,404,500
1,476,600 | 1,389,400
1,553,800
1,674,700 | 1,451,100
1,682,300
1,870,500 | 1,495,400
1,794,300
2,062,900 | 1,529,800
1,898,600
2,260,400 | 1,554,600
1,995,100
2,463,100 | | | OSCEOLA
Low
Medium
High | 322,862 | 344,200
372,800
393,900 | 379,800
435,200
471,100 | 410,800
491,200
550,000 | 432,100
537,600
625,200 | 445,900
577,600
698,400 | 456,800
616,300
776,000 | | | PALM BEACH
Low
Medium
High | 1,391,741 | 1,393,400
1,465,900
1,532,000 | 1,419,100
1,550,600
1,659,900 | 1,438,800
1,619,100
1,781,600 | 1,450,000
1,679,700
1,901,200 | 1,455,800
1,735,100
2,022,200 | 1,457,400
1,786,600
2,145,600 | | | PASCO
Low
Medium
High | 495,868 | 507,300
534,800
557,800 | 528,900
579,800
618,700 | 547,900
618,300
678,400 | 563,600
653,900
739,000 | 575,900
686,000
799,900 | 585,700
715,800
862,300 | | | PINELLAS
Low
Medium
High | 954,569 | 932,400
967,400
1,004,900 | 920,500
982,400
1,044,100 | 912,400
995,700
1,083,300 | 903,100
1,007,900
1,122,600 | 887,400
1,012,800
1,154,800 | 875,000
1,021,300
1,192,300 | | | POLK
Low
Medium
High | 646,989 | 655,100
698,000
734,800 | 678,800
757,200
818,100 | 697,400
806,800
899,000 | 711,900
853,700
982,100 | 722,100
896,400
1,067,000 | 727,500
935,200
1,152,600 | | | PUTNAM
Low
Medium
High | 72,972 | 69,800
73,100
76,700 | 67,900
73,600
79,400 | 66,400
74,000
82,100 | 64,800
74,300
84,700 | 63,100
74,600
87,200 | 61,400
74,800
89,800 | | | ST. JOHNS
Low
Medium
High | 220,257 | 231,600
250,500
265,100 | 251,000
287,000
311,400 | 268,700
320,800
359,700 | 282,200
351,100
408,300 | 291,500
377,500
456,600 | 298,000
402,200
506,200 | | | ST. LUCIE
Low
Medium
High | 292,826 | 298,700
318,600
335,100 | 313,100
349,900
377,400 | 326,100
378,000
420,400 | 336,700
404,100
464,500 | 345,100
428,200
509,900 | 351,000
450,300
556,100 | | | County
and State | Estimates
April 1, 2016 | Projections, April 1 | | | | | | | |---------------------|----------------------------|----------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--| | | | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | | | | | | | | | | | | | SANTA ROSA
Low | 167,009 | 168,400 | 174,300 | 178,700 | 181,000 | 182,500 | 183,000 | | | Medium | | 181,400 | 197,900 | 211,700 | 223,700 | 235,300 | 246,300 | | | High | | 192,700 | 216,600 | 239,900 | 262,900 | 287,200 | 312,500 | | | SARASOTA | 399,538 | | | | | | | | | Low | , | 400,000 | 406,900 | 412,300 | 414,500 | 412,800 | 410,200 | | | Medium | | 420,800 | 444,600 | 464,000 | 480,000 | 492,200 | 503,700 | | | High | | 439,700 | 476,000 | 510,600 | 543,400 | 573,400 | 604,000 | | | SEMINOLE | 449,124 | 451.000 | 464.000 | 460 200 | 475 200 | 470.600 | 470.000 | | | Low
Medium | | 451,000
474,700 | 461,000
504,000 | 469,300
528,400 | 475,200
550,700 | 478,600
570,300 | 479,800
588,000 | | | High | | 495,900 | 539,200 | 581,100 | 623,100 | 664,800 | 706,400 | | | SUMTER | 118,577 | | | | | | | | | Low | 110,511 | 128,400 | 143,800 | 157,000 | 168,000 | 175,500 | 180,600 | | | Medium | | 140,900 | 168,100 | 192,600 | 216,000 | 236,400 | 255,200 | | | High | | 150,000 | 183,900 | 219,000 | 256,100 | 293,200 | 331,200 | | | SUWANNEE | 44,349 | | | | | | | | | Low
Medium | | 43,800
46,000 | 43,900
47,800 | 44,100
49,300 | 44,000
50,600 | 43,800
51,800 | 43,500
52,700 | | | High | | 48,100 | 51,400 | 54,500 | 57,600 | 60,600 | 63,600 | | | TAYLOR | 22,478 | | | | | | | | | Low | 22,410 | 21,100 | 20,600 | 20,100 | 19,600 | 19,000 | 18,500 | | | Medium | | 22,400 | 22,700 | 23,000 | 23,200 | 23,300 | 23,500 | | | High | | 23,700 | 24,800 | 25,900 | 27,000 | 28,000 | 29,000 | | | UNION | 15,887 | | | | | | | | | Low | | 15,400
16,300 | 15,200
16,800 | 15,000
17,100 | 14,800
17,500 | 14,500
17,700 | 14,100
18,000 | | | Medium
High | | 17,200 | 18,300 | 19,300 | 20,300 | 21,300 | 22,300 | | | 5 | F17 411 | | | | | | | | | VOLUSIA
Low | 517,411 | 519,300 | 527,700 | 535,200 | 540,900 | 544,500 | 546,300 | | | Medium | | 540,300 | 565,300 | 586,000 | 604,600 | 621,000 | 635,400 | | | High | | 559,700 | 598,500 | 635,500 | 672,300 | 708,700 | 744,400 | | | WAKULLA | 31,599 | | | | | | | | | Low | | 31,300 | 31,800 | 32,200 | 32,400 | 32,400
40,000 | 32,200 | | | Medium
High | | 33,300
35,200 | 35,400
38,400 | 37,100
41,500 | 38,600
44,700 | 47,800 | 41,200
51,000 | | | J | 62.042 | | | | | | | | | WALTON
Low | 62,943 | 65,200 | 69,600 | 73,000 | 75,700 | 77,800 | 79,100 | | | Medium | | 70,400 | 79,300 | 86,800 | 93,700 | 100,300 | 106,100 | | | High | | 74,600 | 86,400 | 98,100 | 110,000 | 122,500 | 135,000 | | | WASHINGTON | 24,888 | | | | | | | | | Low | | 24,000 | 23,700 | 23,300 | 22,800 | 22,200 | 21,600 | | | Medium
High | | 25,500
26,900 | 26,100
28,500 | 26,600
30,000 | 26,900
31,400 | 27,200
32,600 | 27,400
33,900 | | | 3 | 20.440.654 | , | , | | | , | ,- 30 | | | FLORIDA
Low | 20,148,654 | 20,838,000 | 21,972,900 | 22,875,200 | 23,601,600 | 24,177,300 | 24,649,200 | | | Medium | | 21,438,700 | 22,943,900 | 24,244,300 | 25,397,400 | 26,426,400 | 27,378,400 | | | High | | 22,047,700 | 23,934,700 | 25,651,900 | 27,257,600 | 28,774,600 | 30,251,200 | | | | | | | | | | | |