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Abstract

The ability to measure centrality in social networks has been a particularly useful development in
social network analysis. For researchers trying to decide which centrality measure is most meaning-
ful and valid for their research purposes, various papers have explored the conceptual foundations
of centrality measures. Less well documented is the empirical performance of centrality measures
under different research scenarios or constraints. This study uses bootstrap sampling procedures to
determine how sampling affects the stability of 11 different network centrality measures. Results
indicate that some measures are more stable than others, and that stability is also a function of
network and study properties.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The ability to measure centrality in social networks has been a particularly useful de-
velopment in social network analysis. Measures of centrality describe actors’ positions in
a network relative to others and in relation to the complete network. Several centrality
measures have been created to measure which individuals in a network possess influential
and prestigious roles (Freeman, 1979; Bonacich, 1972, 1987; Scott, 2000; Wasserman and
Faust, 1994). Additional measures have been developed to indicate the social influence of
an individual on the other individuals in his or her network (Friedkin, 1991). Most recently,
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measures of network centrality have been proposed to assess an individual’s integration
into his or her network (Valente and Foreman, 1998).

Two approaches have been used to help identify which centrality measure is most mean-
ingful or useful for a particular research project. First, some researchers have explored the
conceptual foundations of centrality measures (Freeman, 1979; Friedkin, 1991). Second,
others have studied the empirical performance of centrality measures under different re-
search scenarios or constraints (Bolland, 1988; Galaskiewicz, 1991). For example,Bolland
(1988)evaluated the performance of measures of centrality degree, betweenness, closeness
and continuing flow (Bonacich, 1972) in real and simulated networks. Using data from a
network of influence relationships among 40 political participants in an education program
in Chillicothe, Ohio, Bolland simulated the addition of random links between a target node
and a randomly selected set of other nodes in the network. Each measure was then evaluated
on its robustness to random error, and sensitivity to systematic variation in the network.

Galaskiewicz (1991)used data from a study of interorganizational linkages in two com-
munities and sampled from the original networks at 75, 50 and 25%, 10 times at each
sampling percentage. He then compared the resulting individual centrality scores to the in-
dividual centrality scores calculated on the original matrices. He found that as the sampling
percentage increased or the number of trials increased the size of the errors of estimation
shrank as did the variance of the errors and that he was able to derive more accurate estimates
of actor’s point centrality scores in networks that were sparser and for less popular actors
(i.e. actors with fewer ties to others in the network). There was no evidence that network
size affected the accuracy of the estimates.

The present study follows logic similar to the Galaskiewicz study but we include 11
centrality measures, expand the sampling levels and expand the empirical analysis. We
simulate non-response in order to determine how stable different centrality measures are
when respondents are not interviewed or do not respond. Network studies, particularly
network-based interventions, have been hampered by the perceived cost of interviewing a
large portion of the network. Complete population interviewing is motivated by concern
that network measures become increasingly unreliable as sample proportion decreases.Burt
(1983)argued that less than 100% participation seriously affects network data. Further,
since every participant contributesN − 1 pieces of information (who they did and did not
nominate) each missing interview constitutes a lot of missing data.

Even in settings that contain enumerated populations with delineated boundaries and thus
appear ideally suited for network studies, for example, schools, organizations, and small
rural communities, some network members are missed or refuse to participate resulting
in less than 100% participation. Given that data are always missing on some segment of
the population, conclusions that can be drawn about the entire population are subject to a
degree of uncertainty. Frank has provided statistical approaches to quantify the degree of
uncertainty in these conclusions (Frank, 2002).

This study compares centrality measures on their performance in different networks at
decreasing sampling levels. Specifically, we compare the stability of 11 centrality mea-
sures at eight different sampling proportions, in eight different study settings containing 59
networks. We investigate the factors that may improve or retard their stability. Our results
underline the importance of understanding how the network measures are calculated when
selecting the most appropriate measure.
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2. Methods

2.1. Datasets

Eleven centrality measures are considered; in-degree, out-degree, degree symmetrized,
betweenness directed and betweenness symmetrized, closeness directed and closeness sym-
metrized, the first eigenvector, which we refer to as simple eigenvector, Bonacich’s 1972
eigenvector centrality,2 radiality and integration.3 We also attempted to calculate Friedkin’s
measures of social influence centrality but were unsuccessful due to the fact that our net-
works were nonergodic. Each measure is calculated then correlated with the measure ob-
tained when samples of the original network are taken. Data were originally collected in
eight studies, which included 63 sociometric networks in a variety of settings. All of these
studies interviewed or attempted to interview all of the members of bounded communities.

Table 1presents characteristics of the datasets. The oldest study is the 1955 classic Med-
ical Innovation study (Coleman et al., 1966; Burt, 1987). Physicians in four Illinois com-
munities: Peoria, Bloomington, Quincy, and Galesburg, were asked to name three general
practitioners who lived in their communities with whom they discussed medical practices,
from whom they sought advice, and whom they considered friends.

Data for study two were collected in 1973 in a study of the diffusion of family planning
practices in Korea (Rogers and Kincaid, 1981). Women in rural villages were asked to
nominate five other village residents from whom they sought advice about family planning.
Data from the third study were collected in rural villages in 1966 in a study of the spread of
farming practices in Brazil (Rogers et al., 1970). Farmers were asked to name their three best
friends, the three most influential people in their community, and the three most influential
farmers in their community.

Data for studies four and five were collected in 1993 from women’s voluntary asso-
ciations, tontines, in urban Cameroon using both nominations and roster data collection
techniques (Valente et al., 1997). Study participants initially were asked to nominate five
friends who were members of their voluntary organization. In a separate question, study
participants were asked to circle the names of friends on a roster, which listed the names
of all members of the voluntary organization. These two questions may generate different
networks and therefore were considered as two distinct datasets and centrality measures are
calculated for each separately.

In these first five studies, network data were collected to study the spread of a new idea,
opinion or practice (Valente, 1995; Rogers, 1995). In the last three studies, network data were
collected in order to assist executives in organizations to better understand the information
flows within and between organizations (Burt, 1992). Data for study six were collected in
1991 from all the attorneys, partners and associates, employed in a law firm (Lazega and

2 Use of the first eigenvector and another eigenvector measure of centrality were proposed by Bonacich in his
1972 article. In 1987, Bonacich developed an additional measure of centrality using the eigenvector, which he
referred to as “power”. We were not able to include Bonacich’s “power” measure in our analyses as by symmetrizing
the missing data we created linear dependencies in the matrix and thus could not calculate “power”.

3 We were able to calculate both the directed and symmetrized versions of betweenness, closeness and degree
because all of the ties reported were initially directed.
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Table 1
Description of datasets

Dataset Year of data
collection

Setting Make up of networks No. of network
questions

Question(s) asked

1 1955 Illinois communities Physicians 3 Name three physicians who you consider friends,
with whom you discuss medical practices, and
from whom you seek advice

2 1973 Rural villages in Korea Married women of
childbearing age

1 Name five people in the village from whom you
seek advice about family planning

3 1966 Rural villages in Brazil Farmers 3 Name three best friends, three most influential
people in the community, and three most influential
farmers

4 1993 Urban Cameroon Women belonging to a
voluntary organization

1 Name five friends belonging to the voluntary
organization

5 1993 Urban Cameroon Women belonging to a
voluntary organization

1 Circle names of all organization members
considered friends

6 1991 Corporate law firm
in the US

All attorneys 3 Circle names of all other attorneys considered
strong coworkers, friends and individuals to whom
you would go for advice

7 1996 IT department in a
company in Latin
America

All information
technology (IT)
employees

7 Seven separate questions regarding information
exchange at work

8 1996 IT department in a
company in the US

All information
technology (IT)
employees

7 Seven separate questions regarding information
exchange at work
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van Duijn, 1997; Lazega, 2000; Lazega and Pattison, 1999). A second distinction is that the
boundary for this network was functional rather than geographic. The law firm had multiple
offices throughout the US and as such the network data were collected among employees
working in offices located in three different US cities. Data for studies seven and eight were
collected in 1996 from the information technology (IT) personnel within a Latin American
company and within a US company, respectively (Krebs, 1996).

In the law firm, attorneys were asked in three separate questions to nominate other lawyers
within the firm whom they would consider to be close coworkers, friends, and individuals
to whom they went for advice. Attorneys were given a roster of names and were allowed
to nominate as many other attorneys from the roster as they chose for each question. In the
high tech firms, IT employees were asked seven separate questions regarding the exchange
of specific types of work information. For each question, they were allowed to select an
unlimited number of names from a roster, which listed the names of all other IT personnel
employed by their firm.

2.2. Network characteristics

These sociometric networks differ in their size, the number of questions asked of re-
spondents, the type of questions asked, and the number of nominations allowed.Table 2
summarizes these differences and shows that most of these studies collected data from more
than one network. For example, the Brazilian farmer’s study interviewed farmers living in
11 different villages. The total number of networks in these eight studies was 63.

Given that our aim was to determine how well centrality measures calculated from sam-
pled nodes approximate those calculated from the entire network, we felt it would be more
difficult to make this comparison if information from a large portion of the network was not
collected. Therefore, we excluded from our study any network in which less than 50% of the
enumerated population initially responded to the network questions. Using this criterion we
excluded one of the Illinois communities, one Korean village, and one of the Cameroonian
women’s voluntary organizations, leaving a final sample of 59 networks.4 Since it would
be cumbersome to present the characteristics of all 59 of these networks and since networks
in the same study often shared similar attributes,Table 2presents the average properties of
the networks in the eight studies.

In these data response rates ranged from 51 to 100%. The medical innovation study had
the lowest response rates while the organizational studies had the highest. Undoubtedly, the
response rates are related to how well the network boundaries were defined and to study
settings. Within a clearly bounded organization, response rates are likely to be higher as it
is easier to locate all network members initially as well as to track down non-respondents.
Response rates are also affected by the wording of the questions and the method in which
surveys are administered.

Network size ranged from 34 to 169 people. The women’s voluntary organizations in
Cameroon were the largest while the physicians in Illinois were the smallest. However,

4 Since the roster data and the nominations data for the Cameroonian women’s voluntary organizations were
considered as two distinct datasets, exclusion of data from one of the women’s voluntary organizations resulted
in the loss of two networks.
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Table 2
Characteristics of networks

Dataset Number of
networks
analyzeda

Average
network
size

Average
response
rate (%)

Average
network
density

Total number of
nominations
possible

Average
number of
nominations

Range of
out-degree
nominations sent

Average network
centralization
(symmetrized) (%)

Average network
centralization
(in-degree) (%)

Average network
centralization
(out-degree) (%)

1 3 64 56 0.06 9 2.61 0–8 24.11 20.04 12.26
2 24 68 64 0.03 5 1.64 0–5 20.02 21.06 5.12
3 11 76 82 0.03 9 1.94 0–7 27.35 30.04 5.77
4 9 83 76 0.04 5 3.13 0–5 22.08 28.65 2.03
5 9 83 76 0.49 Unlimited 39.06 0–152 28.82 16.77 49.77
6 1 71 100 0.32 Unlimited 22.15 2–49 33.23 30.64 39.46
7 1 72 82 0.20 Unlimited 14.19 0–34 24.39 24.34 28.69
8 1 45 96 0.38 Unlimited 16.62 0–40 43.45 35.74 54.34

a Networks in which the response rate was less than 50% were excluded from our analysis.
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presentation of the average network size masks the fact that the Cameroon networks
ranged in size from 55 to 169 nodes and the Illinois physician networks ranged in
size from 34 to 199 nodes. There was a smaller range of network sizes in the other
datasets.

Average network density ranged from 3 to 49% in the studies (Table 2) and from 1
to 47% in the networks. Network density is a result of four factors: network size, the
number of nominations permitted, number of network questions asked, and the type of
questions asked. All other things being equal, as network size decreases network density
will increase (Scott, 2000) whereas as number of nominations recorded decreases net-
work density decreases. Studies that limited the number of nominations to five or nine
nominations were less dense, while those that did not limit the number were denser. A
roster increases the number of nominations measured by cueing participants to think of
every other individual in the network. Indeed, in the roster data some respondents circled
everyone.

In addition, some networks included responses from multiple questions. For all of the
datasets that asked study participants multiple network questions, centrality measures were
calculated on the network created from the responses to all of the questions; thereby, al-
lowing for a maximum of nine nominations in the case of the physicians, Brazilian farmers
and corporate lawyers. However, it should be noted that asking people to name X other
individuals to whom they are connected in Z different ways is different than allowing
people to name as many other individuals as they choose for one question. In the for-
mer case, it is likely that the same individuals will be named for more than one question
and therefore will not be double counted. Comparing the upper bound on the range of
out-degree nominations with the total number of nominations possible confirms that this
is the case for both the physicians’ and the farmers’ datasets (Table 2). Despite the fact
that respondents were allowed to name up to nine other individuals in these networks,
the greatest number of unique individuals that anyone nominated was eight and seven,
respectively.

Network centralization describes the extent to which nodes in a network are connected to
one or a group of individuals.Table 2presents symmetric and asymmetric degree central-
ization scores and shows that that the IT employees in the US firm were the most centralized
network, network centralization (symmetrized)—43.45%. A graph of this network reveals
a central core of individuals (not shown). For centralized networks, we expect the centrality
measures to be stable across sampling levels (e.g. a star of 20 nodes would be perfectly
correlated with one of 10 nodes except when the central star is omitted).

2.3. Simulation procedures

Eleven centrality measures were calculated for each network. Symmetric measures were
calculated on adjacency matrices symmetrized on the maximum (i.e. a nomination sent or
received treated as a link). We then took repeated random samples of the network (boot-
strapping) at each of eight different sampling proportions; starting at 80%, decrementing
by 10%, down to 10%. We sampled by rows rather than by columns as we assumed that
most researchers in the field would choose to use as much data as is available to them even
if it means that some ties are only partially described.
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Fig. 1. Flowchart of simulation procedures.

At each sampling level, we correlated the original and sampled centrality measure 25
times, and then calculated the average correlation. We also calculated the difference and
standard deviation of the differences.5 Thus, the data consist of 5192 correlations (59
networks× 11 measures× 8 sampling levels) and the same number of differences and
standard deviations. These correlations (and differences and variances) were then collapsed
into 472 cases (59 networks× 8 sampling levels).Fig. 1 provides a flowchart of the sim-
ulation procedures. Multivariate linear regression analyses were used to determine which
network characteristics best predicted the correlations between actual and sampled central-
ity measures.

Note that in some of the sampled networks (samples), centrality measures could not
be calculated. This happened at the lower sampling proportions (10 and 20%) and most
frequently for the betweenness and closeness measures since the networks became too
sparse and disconnected. When this occurred, the correlation between the original centrality
measure and the new centrality measure obviously could not be calculated. Nevertheless
since this routine was run 25 times at each sampling level, it was always the case that some
of the 25 samples provided enough ties for the new centrality measures and subsequently the
correlations to be calculated. In these instances, the average of the 25 correlations between

5 Our thanks to Kevin Reynolds for suggesting we look at the differences as well as the correlations.
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the old and the new centrality measures was calculated dividing still by 25 despite the fact
that there were not 25 correlations in the numerator.

3. Results

3.1. In-degree centrality

In-degree centrality measures the volume of ties directed to a node, calculated by summing
the number of nominations received. Even at low sampling rates, in-degree had higher
correlations between the actual and the sampled network measures than all of the other
centrality measures with the exception of simple eigenvector centrality.Fig. 2 shows the
results for in-degree centrality correlation among the 11 networks of farmers in Brazil. These
results suggest that had the interviewers only been able to interview a random selection of
50% of the farmers in these networks, the calculation of in-degree centrality nevertheless
would have shown a greater than 0.90 correlation with the measure of in-degree calculated
using data from all of the interviews.

Fig. 3 provides further evidence of the stability of in-degree centrality at low sampling
levels by showing the average correlation across all networks for each dataset. The average
correlation coefficient when only 50% of the network responded was greater than or equal
to 0.86 in all but one dataset.

3.2. Additional centrality measures

Fig. 4displays the decline in average correlations across sampling levels for eight of the
other 10 measures. Taking samples from the data for seven of these measures affects them
to a greater degree than for in-degree centrality.

Out-degree centrality, also a measure of volume of ties but self-reported, is calculated
by summing the number of nominations sent. A 50% sample of the original network had
average correlations ranging from 0.39 to 0.62. The correlations decline more rapidly than
for in-degree centrality. When we sampled the data, nodes dropped from the data were
treated as if they were absent on the day of the survey. Consequently, these nodes had their
out-degree centrality measure drop to zero. In contrast, the in-degree centrality measure was
much less affected by the sampling because although individuals dropped from the sample
were no longer able to send any nominations, they were still able to receive them. Sampling
also had a greater affect on symmetrized degree centrality than on asymmetric in-degree
(lower average correlations) because it includes nominations sent.

Betweenness centrality, the frequency a node lies on the shortest path between other nodes
in the network, measures gatekeeping and control of information in a network (Freeman,
1979). The betweenness of a node is assessed by determining the extent to which a node
lies on the geodesics connecting all other nodes in the network. The average correlation
coefficient based on a simulated 50% sample of the network ranged from 0.38 to 0.54.Fig. 4
does not include the results obtained for betweenness centrality calculated on a symmetrized
matrix (network). Similar to the results obtained for degree directed and symmetrized, the
symmetrized measure had lower correlations than the directed one.
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Fig. 2. Average correlation between actual and sampled in-degree centrality measures for the networks in 11 groups of farmers.
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Fig. 3. Average correlation between actual and sampled in-degree centrality measure for the networks in eight datasets.
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Fig. 4. Average correlation between actual and sampled data for eight different centrality measures in eight datasets.
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Fig. 4. (Continued )
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Fig. 4. (Continued )
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Fig. 4. (Continued ).
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Closeness centrality measures how many steps on average it takes for an individual to
reach everyone else in the network. Individuals who have high closeness centrality measures
can most efficiently make contact with others in the network (Freeman, 1979). Closeness
centrality was measured by taking the reciprocal of the sum of the distances between indi-
viduals. For isolated individuals who have no ties to anyone else in the network, the sum
of the distances between themselves and everyone else in the network would actually be
zero. However, the reciprocal of 0 is an infinite number. Therefore, for these individuals the
maximum geodesic or the largest path in the network was used in place of zero.6 With a
50% sample of the original network nodes, average correlations for the closeness measure
ranged from 0.54 to 0.71.

Typically closeness centrality is measured on a symmetrized matrix as it is assumed that
if Kathy knows Sam that Sam can reach Kathy. However, since this may not always be
the case we calculated closeness centrality on a directed matrix as well. Although these
results are not shown, they indicate that in these 59 networks closeness centrality performs
better as a directed measure than as a symmetric measure. Directed closeness performs
better than symmetrized closeness due to the fact that these are relatively sparse networks,
especially when only counting directed ties. As such, a large number of individuals in the
asymmetrized network have the same closeness centrality in the original dataset as they do
in each of the samples (i.e. the sum of the maximum geodesics).

Integration measures the degree nominations received integrate a node into the network
(Valente and Foreman, 1998). Integration is similar to closeness centrality both conceptually
and computationally. However, while closeness centrality totals the geodesic values and
takes the reciprocal, integration totals the reverse distances between nodes. This difference,
between reversing and reciprocating the sum of the geodesics, allows integration to be a
directed measure. Integration shows correlations nearly as high as in-degree. With a 50%
sample of the original network nodes, average correlations for the integration measure are
0.70 or greater in 41 of the 59 datasets.

Radiality measures the degree nominations sent reach out into the network (Valente and
Foreman, 1998). An individual with a radial network has direct contact with individuals
who do not have direct contact with each other. An individual with high radiality is able
to reach everyone else in the network in fewer steps, on average, than an individual who
has contact with individuals who are connected to each other. Radiality is calculated by
computing integration on the transpose of the adjacency matrix. There is greater variation
in the correlations between radiality calculated on the original networks and the sampled
network than for any of the previous measures.

Of note in several of these graphs, most notably, degree centrality and closeness centrality,
are the wave-like results for the networks of US and Latin American IT employees, and
the network of lawyers. We were unable to determine what combination of factors may be
causing this irregular pattern in the correlations for these datasets; although, the fact that
these datasets did not limit the number of nominations an individual could send is likely

6 There is debate in the social network community regarding path lengths for unreachable nodes. Mathematically,
unreachable nodes have infinite distance. Substantively, a node in a network is part of the network and although not
connected in the data is in some manner connected to the other nodes. Therefore, the maximum geodesic captures
this distance.
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to have contributed. If an individual originally sent 30 nominations and subsequently was
not included into the sample this individual would experience a bigger change in his/her
centrality score than would an individual who originally was only allowed to send five
nominations and subsequently was dropped from the sample.

Eigenvector centrality when calculated using the first eigenvector as a simple raw score
measure was the most stable measure being more highly correlated with its original calcu-
lation than were any of the other measures at low sampling levels. When only 10% of the
network responded the average correlation coefficient for this simple eigenvector centrality
measure was 0.70 or greater in 53 of the 59 networks. Eigenvector centrality when calculated
in this manner is not a graph-theoretic measure, but instead is based on correlations (or more
exactly shared variation). Consequently, sampling from the network seems to have had less
effect on the rank ordering of the nodes than for the graph-theoretic measures. Simple eigen-
vector centrality’s stability may indicate that it is the preferred centrality measure when the
network data are incomplete. It should also be noted that the simple eigenvector centrality
computation was done on symmetrized matrices so its stability should be compared to the
other symmetrized measures.

Bonacich’s 1972 eigenvector centrality measure quantifies the extent nodes are connected
to other central nodes. Nodes connected to highly central nodes have greater centrality
than those connected to less central ones. Because this measure relies not only on ego’s
centrality but also on the centrality of ego’s alters this measure experiences the greatest
fluctuations when nodes are sampled. It is interesting to note that while this measure is
highly unstable across all sampling levels, its stability actually increases at smaller sampling
levels. For example, when 80% of the network is sampled the average correlation coefficients
range from−0.89 to 0.95 whereas when only 10% of the network is sampled the average
correlation coefficients range from−0.10 to 0.44. This finding indicates that failure to
interview even a few people in the network could lead to extremely different results for
Bonacich’s eigenvector measure of centrality. It would seem that this measure is best suited
to situations where the interviewer clearly knows the boundaries of the network and is able
to interview 100% of the network members.

Fig. 5compares the performance of each of the 11 network centrality measures as sam-
ple size decreases. Eigenvector centrality as a simple raw score appears to be the most
stable when sampled, followed by the in-degree and integration measures; both calculated
primarily with nominations received. Out-degree and betweenness centrality, which rely
more heavily on nominations sent, were among the least stable measures. By far, the most
unstable measure across sampling levels was Bonacich’s eigenvector centrality measure.
Also among the least stable of centrality measures was radiality. Radiality and Bonacich’s
eigenvector measure are similar in as much as they both reach out into the network to
determine ego’s centrality.

3.3. Regression analysis

To understand the network characteristics that may account for variation in these correla-
tions, we conducted multivariate linear regression analyses on the correlation of actual and
sampled centrality measures, on the average difference between actual and sampled cen-
trality measures and on the standard deviation of the difference between actual and sampled
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Fig. 5. Average correlation for 11 actual and sampled centrality measures computed for 59 networks.
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centrality measures.Tables 3–5present standardized coefficients for the correlations, aver-
age differences and standard deviations, respectively. In each table, the dependent variables
were regressed on the following covariates: sampling level, response rate, network size,
network density, and network centralization as well as indicator variables for each dataset
(Cameroonian nomination dataset treated as reference category).

With the exception of Bonacich’s eigenvector centrality measure, all models for the
correlations had at least 65% variance explained (R2). As expected, sampling level was
strongly and significantly positively associated with the correlation between actual and
sampled centrality measures for all of the measures other than Bonacich’s eigenvector.
The correlation between the actual and sampled Bonacich eigenvector measure was not
significant but was negative as was shown inFigs. 4 and 5. Note that network centralization
was significantly associated with the correlation for seven of the 11 measures and response
rate, network size and network density were significantly associated with the correlation
for five of the 11 measures.

Interestingly unlike sampling level, which had a positive association with correlation for
10 of the 11 measures, response rate had a negative association for seven of the 11 measures.
The negative association most likely reflects the nature of missing data due to non-response.
It is likely that the individuals who typically are missed or refuse to participate in a study
are individuals who are on the periphery and have fewer connections to the rest of the
social network. It seems plausible that individuals with fewer connections to the group
are more likely to be absent at the time of the survey or to refuse to participate. Network
density was negatively associated with correlations for out-degree, degree symmetrized,
betweenness directed and symmetrized, closeness symmetrized and simple eigenvector
centrality indicating that centrality measures for sparse networks are relatively stable.

The results inTable 3indicate that different factors affect the stability of different mea-
sures. For example, density is positively associated with integration and radiality, and nega-
tively associated with symmetrized degree and betweenness, indicating that the accuracy of
integration and radiality measures may be more stable at higher density than other central-
ity measures. The measure most affected by sampling seems to be directed betweenness,
which has the strongest coefficient for sampling level. Since different factors affect different
measures, the choice of which measure to use depends on its theoretical formulation, not
its stability.

Since the correlations are similarity measures, in some sense we anticipated that a re-
gression of the differences would provide us with results that were in large part the inverse
of the results for the correlations. Contrary to our expectations, this was not the case. Most
notably, network characteristics rather than sampling level were more important covari-
ates of the differences between actual and sampled data. As seen inTables 4 and 5, the
explained variance for the average and standard deviation differences was lower than for
correlations indicating that other network or study characteristics may account for the dif-
ferences. The models for the average difference explained very little of the variance in
the directed closeness and Bonacich eigenvector measures and only from 45 to 76% of
the variance (R2) in the other measures. The models for the standard deviation of the dif-
ference explained as little as 8 and 37% of the variance in the Bonacich eigenvector and
in-degree centrality measures, respectively but from 47 to 89% of the variance in the other
nine measures.
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Table 3
Standardized mulitvariate regression coefficients for the correlation between actual and sampled centrality measures on sampling level, study characteristics, and studies
(N = 472)

Covariate Measure

Degree Betweenness Closeness Integration Radiality Simple
eigen-vector

Bonacich’s
eigenvector

In-degree Out-degree Symmetrized Directed Symmetrized Directed Symmetrized

Sampling level 0.68∗ 0.92∗ 0.81∗ 0.95∗ 0.83∗ 0.82∗ 0.87∗ 0.74∗ 0.72∗ 0.79∗ −0.84
Response rate 0.07 −0.17∗ −0.19∗ −0.07∗ 0.03 0.01 −0.12∗ 0.07 −0.23∗ −0.02 −0.01
Network size 0.04 0.01 −0.10∗ 0.003 −0.06∗ 0.003 −0.11∗ −0.06∗ −0.20∗ −0.02 0.02
Network density 0.01 −0.10∗ −0.25∗ −0.03 −0.19∗ 0.14 −0.12 0.21∗ 0.21∗ −0.07 0.02
Network centralization (in-degree) 0.38∗ −0.02 0.16∗ 0.08∗ 0.01 0.09∗ 0.03 0.13∗ 0.07∗ 0.08∗ −0.01

Tontine nominations data (reference)
Tontine roster data 0.15 0.10∗ −0.01 0.11∗ 0.19∗ −0.14 −0.10 0.11 −0.10∗ 0.15 0.07
Latin American IT department data−0.02 0.03∗ 0.05∗ 0.06∗ 0.11∗ −0.01 0.001 0.02 −0.03∗ 0.02 −0.03
Corporate law firm data 0.001 0.01 0.02 0.04∗ 0.12∗ 0.03 0.08∗ 0.05 −0.21∗ 0.04 0.12∗

Brazilian farmer’s data 0.19∗ 0.17∗ −0.24∗ 0.13∗ 0.21∗ 0.14∗ 0.03 0.34∗ 0.05 0.04 −0.06
Medical innovation data 0.07∗ 0.06∗ −0.09∗ 0.02 0.02 −0.04 −0.09∗ 0.03 −0.10 −0.07∗ 0.02
Korean family planning data 0.14∗ 0.20∗ 0.03 0.06∗ 0.05 −0.07 −0.005 0.18∗ 0.10∗ −0.12∗ 0.08
US IT department data 0.08∗ 0.002 −0.08∗ 0.000 0.03 0.01 −0.09∗ 0.01 −0.20∗ 0.02 0.04

R2 0.66 0.94 0.89 0.93 0.75 0.73 0.85 0.71 0.70 0.66 0.04

∗ P < 0.05.
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Table 4
Standardized mulitvariate regression coefficients for the average difference between actual and sampled centrality measures on sampling level, study characteristics, and
studies (N = 472)

Covariate Measure

Degree Betweenness Closeness Integration Radiality Simple
eigen-vector

Bonacich’s
eigenvector

In-degree Out-degree Symmetrized Directed Symmetrized Directed Symmetrized

Sampling level −0.19∗ −0.19∗ −0.27∗ −0.28∗ −0.36∗ 0.14∗ −0.12∗ −0.39∗ −0.39∗ −0.16∗ −0.01
Response rate 0.09∗ 0.09∗ 0.08∗ 0.55∗ −0.01 0.08 0.14∗ 0.35∗ 0.35∗ 0.02 0.33∗

Network size 0.23∗ 0.23∗ 0.21∗ 0.21∗ 0.22∗ 0.08 0.01 −0.03 −0.03 0.09∗ 0.08
Network density −0.35∗ −0.36∗ 0.21∗ −0.79∗ −0.03 −0.11 0.33∗ −0.31∗ −0.30∗ 0.45∗ −0.60∗

Network centralization (in-degree) 0.07∗ 0.07∗ 0.08∗ −0.11∗ −0.26∗ 0.02 0.08 −0.02 −0.02 0.06 −0.06

Tontine nominations data (reference)
Tontine roster data 1.09∗ 1.10∗ 0.60∗ 0.09 −0.32∗ 0.11 −0.12 0.51∗ 0.50∗ 0.24∗ 0.43∗

Latin American IT department data 0.11∗ 0.11∗ 0.06∗ −0.22∗ −0.10∗ 0.01 −0.06 0.06∗ 0.05∗ −0.05 −0.22∗

Corporate law firm data 0.16∗ 0.16∗ 0.05 −0.16∗ −0.10∗ 0.008 −0.14∗ 0.10∗ 0.10∗ −0.09∗ 0.05
Brazilian farmer’s data 0.01 0.01 0.01 −0.81∗ 0.38∗ 0.004 −0.19∗ −0.58∗ −0.58∗ 0.16∗ −0.34∗

Medical innovation data 0.08∗ 0.08∗ 0.06∗ −0.07 0.09∗ −0.12∗ 0.04 −0.02 −0.02 0.02 0.05
Korean family planning data 0.08 0.08 0.07 −0.52∗ 0.28∗ 0.001 −0.48∗ −0.38∗ −0.39∗ 0.07 −0.07
US IT department data 0.29∗ 0.29∗ 0.09∗ −0.08 −0.03 0.02 −0.04 0.09∗ 0.09∗ 0.31∗ −0.1

R2 0.71 0.71 0.75 0.51 0.61 0.05 0.45 0.76 0.76 0.56 0.18

∗ P < 0.05.
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Table 5
Standardized mulitvariate regression coefficients for the standard deviation of the difference between actual and sampled centrality measures on sampling level, study
characteristics, and studies (N = 472)

Covariate Measure

Degree Betweenness Closeness Integration Radiality Simple
eigen-vector

Bonacich’s
eigenvector

In-degree Out-degree Symmetrized Directed Symmetrized Directed Symmetrized

Sampling level −0.07 −0.04∗ −0.17∗ −0.14∗ 0.01 −0.30∗ −0.30∗ −0.38∗ −0.07∗ −0.57∗ 0.02
Response rate 0.16∗ 0.08∗ 0.03 0.52∗ 0.31∗ 0.53∗ −0.000 0.31∗ 0.09∗ 0.08∗ 0.18∗

Network size 0.39∗ 0.26∗ 0.26∗ 0.33∗ 0.60∗ −0.07∗ −0.04∗ −0.06∗ −0.05∗ 0.12∗ −0.15∗

Network density −1.04∗ −0.42∗ 0.11 −0.85∗ −0.77∗ −0.44∗ 0.61∗ −0.15 0.21∗ 0.21∗ −0.29
Network centralization (in-degree) 0.14∗ 0.09∗ 0.13∗ −0.03 0.09∗ 0.24∗ 0.07∗ 0.15∗ −0.04 0.05∗ −0.08

Tontine nominations data (reference)
Tontine roster data 1.28∗ 1.25∗ 0.80∗ 0.11 0.14 0.03 0.02∗ −0.61∗ 0.33∗ 0.44∗ 0.13
Latin American IT department data 0.13∗ 0.13∗ 0.08∗ −0.05 −0.04 −0.12∗ −0.01∗ −0.27∗ 0.11 0.06∗ 0.03
Corporate law firm data 0.19∗ 0.17∗ 0.09∗ −0.16∗ −0.09∗ −0.07∗ −0.03∗ −0.34∗ 0.07∗ 0.04 −0.07
Brazilian farmer’s data 0.03 0.01 0.05 −0.70∗ 0.06 −0.43∗ −0.001 −0.29∗ −0.48∗ −0.05 0.04
Medical innovation data 0.15∗ 0.09∗ 0.06∗ 0.00 0.10∗ −0.06 0.00 0.02 0.00 0.05 0.1
Korean family planning data 0.18∗ 0.09∗ 0.06∗ −0.43∗ 0.00 −0.43∗ −0.14∗ −0.21∗ −0.35∗ −0.02 0.12
US IT department data 0.42∗ 0.31∗ 0.10∗ −0.05 0.04 0.19∗ −0.01 −0.28∗ 0.07∗ 0.08∗ 0.01

R2 0.37 0.84 0.86 0.47 0.73 0.69 0.89 0.72 0.86 0.82 0.08

∗ P < 0.05.
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4. Discussion

Our results indicate relatively high correlation, albeit in some instances substantial ab-
solute differences, between actual network properties and those calculated on randomly
selected sub-samples for some network measures. This indicates that under some circum-
stances researchers may be still be able to use network data for which some data are miss-
ing to study network properties or create network-based interventions. In other words,
researchers who do not interview all members of a community or network may still be able
to take advantage of some aspects of network theory and techniques.

As noted previously, the stability of eigenvector centrality when calculated as a simple
raw score may indicate that it is the preferred centrality measure when the network data are
incomplete. However, the fact that sampling has less effect on this centrality measure may
be due to the fact that in comparison to the other centrality measures, which measure the
ones (i.e. the actual nominations), this measure is able to effectively capture the similarity of
zeros. Since many of the studies restrict nominations to five people, there are a lot of zeros
in the original networks. Consequently, eigenvector centrality as a simple raw score is less
affected by sampling from the networks as the zeros are preserved. Conversely, radiality
and Bonacich’s eigenvector centrality measure, which reach out into the network and rely
on information about ego’s alters, appear to be less preferred measures when network data
are incomplete. Yet since these measures rely on more global network information, they
may do a better job of measuring centrality relative to the whole network.

The results of this study should be interpreted with caution as there are a number of
limitations to the generalizability of these findings. Although an effort was made to include
sociometric network datasets that were collected for networks of different sizes, for different
reasons, in different locations and using different questions, these eight studies are by no
means a comprehensive subset of the many varieties of sociometric network studies that
have been conducted to date. For instance, this subset of datasets does not include either a
study of disease transmission or a longitudinal study of network properties.

Furthermore, given our limited information about several of these aforementioned aspects
of the network data (i.e. motivation for conducting the study, study setting and choice of
network generating questions) we were not able to distinguish in our analysis between the
influences of these different factors on the resulting network properties. In addition it should
be noted that another network factor that may be influencing our results is the content of
the tie since we include studies of friendship ties, coworker ties, discussion partners and
advice and information sources. In fact, the regression results shown inTable 3reveal
that for nine of the 11 measures the Brazilian farmers’ dataset showed higher correlations
across sampling levels than did the Cameroon nominations dataset. Nevertheless, why the
Brazilian farmers study had higher correlations is a matter of conjecture given that in our
regression analysis we controlled for these various influences simultaneously by simply
including an indicator variable for each dataset.

Our results are premised on the notion that sampling provides data missing at random,
rather than missing due to some attribute of the respondents or study setting. Clearly,
non-random factors influence respondent participation that could be accounted for in future
studies. In addition, it is possible that there are other factors unknown to us that may have
influenced how study participants responded to the network questions or the way in which
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the network centrality measures correlated across sampling levels. For instance, the rapport
the researcher had with the study participants may have influenced how much attention
study participants gave to answering each question carefully. Alternatively, other ties may
have existed between network members that may have correlated better across sampling
levels, but about which no data were collected.

Rather than providing a definitive answer to the question of whether or not sociometric
network data collection should entail complete population interviewing, these simulations
provide a tentative benchmark for future studies. In other words, network researchers may
find it helpful to refer to our findings when contemplating the appropriateness of sampling
under the circumstances and interests of their particular studies. We do not mean to imply
however that concerns about sampling should be a primary motivating factor. Finally, we
would encourage future network studies to employ our methodology on their own data in
order to contribute to the existing body of knowledge regarding sampling from sociometric
networks.

The next phase of this research agenda will be to determine appropriate snowball sample
sizes, essentially reframing the sampling problem from a snowball perspective: how many
initial nodes (index cases) and their alters are needed to confidently measure a network.
This problem is at an order of magnitude more complex than the one presented here since
we have to vary the sampled proportion of index cases, alters, and steps (direct nominees,
nominees of nominees and so on). The results, however, would be useful for contact tracing
studies, and alternative network study designs.

Our tentative conclusion is that some centrality measures such as in-degree, integration,
and the simple eigenvector are relatively stable provided the network boundary can be
specified. In-degree centrality is relatively stable even at a low sampling level (i.e. 50%
missing at random) and so can be used for network-based interventions (Valente and Davis,
1999) and as an indicator of network position. Eigenvector centrality as a simple raw
score was also stable due in large part to its ability to capture network structure based
on nominations not made as well as those made. Study characteristics mattered, measures
in some studies were more stable than others, and so we recommend that future studies
with less than 100% response rates compare their results to these in order to estimate the
potential bias in their centrality measures.
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